植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 331-342.DOI: 10.17521/cjpe.2023.0207 cstr: 32100.14.cjpe.2023.0207
收稿日期:
2009-01-12
接受日期:
2009-06-03
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*胡文海: (E-mail: jshe@pku.edu.cn)作者简介:
胡文海: 0000-0003-0147-995X
YAN Xiao-Hong1,2, FU Ying-Jiang1, HU Wen-Hai1,2,*()(
)
Received:
2009-01-12
Accepted:
2009-06-03
Online:
2025-02-20
Published:
2025-02-20
Contact:
*HU Wen-Hai: 0000-0003-0147-995X (E-mail: jshe@pku.edu.cn)摘要: 气候变暖导致亚热带地区冬季出现日最高气温在15 ℃以上亚适温的短暂升温现象, 然而不同耐冷性常绿阔叶植物的光合作用是如何响应这种短暂升温的尚缺乏研究。该研究以栽培于亚热带的红叶石楠(Photinia × fraseri, 耐冷性强)、荷花木兰(Magnolia grandiflora, 耐冷性中等)和雅榕(Ficus concinna, 冷敏感)为材料, 比较了这3种常绿阔叶植物阴生叶和阳生叶光系统II (PSII)功能对冬季短暂升温的响应。结果表明: 受冬季低温抑制的这3种常绿阔叶植物PSII功能在短暂升温期内(持续3天日最高气温在15 ℃以上)均有所恢复, 但其PSII功能和恢复程度对升温呈现不同的响应特征。红叶石楠阴生叶和阳生叶冬季PSII光抑制为可逆光抑制, PSII最大光化学效率(Fv/Fm)在升温条件下均可恢复至正常水平(>0.80); 且升温刺激了其阴生叶和阳生叶PSII功能的超补偿恢复, PSII反应中心开放程度(qP)和热耗散能力(NPQ)均高于冬季降温前(10月)水平, 其中阴生叶光化学反应恢复程度高于阳生叶, 而阳生叶热耗散恢复程度高于阴生叶。荷花木兰阴生叶冬季PSII光抑制以可逆光抑制为主, 阳生叶则部分区域受到光抑制破坏; 冬季短暂升温促进了荷花木兰PSII功能较大程度恢复, 虽然总体上升温对叶片热耗散恢复的促进作用大于光化学反应, 但两种类型叶片相对而言, 阴生叶热耗散恢复程度高于阳生叶, 而阳生叶的光化学反应恢复程度高于阴生叶。冷敏感植物雅榕阴生叶冬季PSII光抑制也以可逆光抑制为主, 阳生叶则受到严重光抑制破坏; 冬季短暂升温下雅榕阴生叶PSII功能有一定程度恢复, 而阳生叶PSII功能未能有效恢复, 但总体上升温更有利于雅榕叶片热耗散的恢复。该研究结果表明, 3种常绿植物PSII光抑制程度与植物的耐冷性呈正相关关系, 冬季短暂升温刺激了3种常绿植物PSII功能的恢复, 其中耐冷性强的红叶石楠PSII光化学反应和热耗散能力获得超补偿恢复, 耐冷性中等的荷花木兰热耗散恢复优于光化学反应, 但对冷敏感性雅榕叶片仅有利于热耗散的恢复。
闫小红, 傅英健, 胡文海. 亚热带地区3种常绿阔叶植物光系统II功能对冬季短暂升温的响应. 植物生态学报, 2025, 49(2): 331-342. DOI: 10.17521/cjpe.2023.0207
YAN Xiao-Hong, FU Ying-Jiang, HU Wen-Hai. Responses of photosystem II function of three evergreen broadleaf species to transient warming at winter in subtropical region. Chinese Journal of Plant Ecology, 2025, 49(2): 331-342. DOI: 10.17521/cjpe.2023.0207
图2 3种常绿阔叶植物光系统II最大量子产量(Fv/Fm)的变化(平均值±标准误, n = 5)。
Fig. 2 Changes in the maximum quantum yield of photosystem II (Fv/Fm) of three evergreen broadleaf species (mean ± SE, n = 5).
图3 3种常绿阔叶植物通过光系统II电子传递速率(ETR(II))快速光响应曲线(平均值±标准误, n = 5)。PAR, 光合有效辐射。
Fig. 3 Rapid light response curves of electron transport rate of PSII (ETR(II)) in the three evergreen broadleaf species (mean ± SE, n = 5). PAR, photosynthetically active radiation.
图4 3种常绿阔叶植物最大光合电子流(Jmax)和饱和光强(PARsat)的变化(平均值±标准误, n = 5)。不同小写字母表示不同叶类型和升温前后在0.05水平上差异显著。
Fig. 4 Changes in the maximum photosynthetic electron flow (Jmax) and saturated irradiance (PARsat) of three evergreen broadleaf species (mean ± SE, n = 5). Different lowercase letters are significantly different between leaf types, before and after warming (p < 0.05).
参数 Parameter | F | ||
---|---|---|---|
光环境 Light | 温度 Temperature | 光环境×温度 Light × temperature | |
红叶石楠 Photinia × fraseri | |||
Jmax | 40.404*** | 37.689*** | 0.578 |
PARsat | 154.136*** | 20.482** | 15.657** |
荷花木兰 Magnolia grandiflora | |||
Jmax | 37.702*** | 46.720*** | 2.483 |
PARsat | 13.864** | 14.915** | 2.651 |
雅榕 Ficus concinna | |||
Jmax | 58.026*** | 23.387*** | 4.966 |
PARsat | 41.981*** | 11.853** | 2.516 |
表1 光环境和温度变化对3种常绿阔叶植物最大光合电子流(Jmax)和饱和光强(PARsat)的协同影响
Table 1 Collaborative effects of light environment and temperature variation on the maximum photosynthetic electron flow (Jmax) and saturated irradiance (PARsat) of three evergreen broadleaf plants
参数 Parameter | F | ||
---|---|---|---|
光环境 Light | 温度 Temperature | 光环境×温度 Light × temperature | |
红叶石楠 Photinia × fraseri | |||
Jmax | 40.404*** | 37.689*** | 0.578 |
PARsat | 154.136*** | 20.482** | 15.657** |
荷花木兰 Magnolia grandiflora | |||
Jmax | 37.702*** | 46.720*** | 2.483 |
PARsat | 13.864** | 14.915** | 2.651 |
雅榕 Ficus concinna | |||
Jmax | 58.026*** | 23.387*** | 4.966 |
PARsat | 41.981*** | 11.853** | 2.516 |
图5 3种常绿阔叶植物光化学猝灭(qP)和非光化学猝灭(NPQ)的变化(平均值±标准误, n = 5)。
Fig. 5 Changes in the photochemical quenching (qP) and non-photochemical quenching (NPQ) of three evergreen broadleaf species (mean ± SE, n = 5).
图6 3种常绿阔叶植物光系统II (PSII)能量分配的变化(平均值±标准误, n = 5)。Y(II), PSII实际光化学量子产量; Y(NO), PSII非调节性能量耗散的量子产量; Y(NPQ), PSII调节性能量耗散的量子产量。
Fig. 6 Changes in the energy partitioning of photosystem II (PSII) of three evergreen broadleaf species (mean ± SE, n = 5). Y(II), effective PSII quantum yield; Y(NO), quantum yield of non-regulation energy dissipation; Y(NPQ), quantum yield of regulated energy dissipation.
[1] | Adams WW III, Zarter CR, Ebbert V, Demmig-Adams B (2004). Photoprotective strategies of overwintering evergreens. BioScience, 54, 41-49. |
[2] | Arora R, Rowland LJ (2011). Physiological research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design. HortScience, 46, 1070-1078. |
[3] | Chen JG, Yang Y, Sun H (2011). Advances in the studies of responses of alpine plants to global warming. Chinese Journal of Applied and Environmental Biology, 17, 435-446. |
[陈建国, 杨杨, 孙航 (2011). 高山植物对全球气候变暖的响应研究进展. 应用与环境生物学报, 17, 435-446.] | |
[4] | Chen Y, Ren GY, Wang L, Zou XK, Zhang Q (2009). Temporal change of warm winter events over the last 56 years in China. Journal of Applied Meteorological Science, 20, 539-545. |
[陈峪, 任国玉, 王凌, 邹旭恺, 张强 (2009). 近56年我国暖冬气候事件变化. 应用气象学报, 20, 539-545.] | |
[5] | Cheng DM, Zhang ZY, Zhou SX, Peng YS, Zhang ZX (2019). Photoinhibition and recovery of photosystem II of three broad-leaved evergreens under low temperature stress. Guihaia, 39, 1666-1672. |
[程冬梅, 张志勇, 周赛霞, 彭焱松, 张兆祥 (2019). 三种常绿阔叶树光系统II在低温胁迫下的光抑制及恢复. 广西植物, 39, 1666-1672.] | |
[6] | Demmig-Adams B, Adams WW III (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599-626. |
[7] | Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Öquist G (2004). Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology, 10, 995-1008. |
[8] |
Hendrickson L, Furbank RT, Chow WS (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 73-81.
DOI PMID |
[9] | Hu WH, Xiao YA, Yan XH, Ye ZP, Zeng JJ, Li XH (2021). Photoprotective mechanisms under low temperature and high light stress of Photinia × fraseri and Osmanthus fragrans during overwintering. Bulletin of Botanical Research, 41, 938-946. |
[胡文海, 肖宜安, 闫小红, 叶子飘, 曾建军, 李晓红 (2021). 越冬期红叶石楠和桂花防御低温强光伤害的光保护机制. 植物研究, 41, 938-946.]
DOI |
|
[10] | Hu WH, Zhang SS, Xiao YA, Yan XH (2015). Physiological responses and photo-protective mechanisms of two Rhododendron plants to natural sunlight after long term shading. Chinese Journal of Plant Ecology, 39, 1093-1100. |
[胡文海, 张斯斯, 肖宜安, 闫小红 (2015). 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制. 植物生态学报, 39, 1093-1100.]
DOI |
|
[11] | Hu XH, Yuan QY, Zhan MY, Zhou SY, Hu WH (2023). Effects of low temperature in winter on photoinhibition of sun leaves and shade leaves in three evergreen broad-leaved plants. Journal of Plant Resources and Environment, 32(2), 65-72. |
[胡雪华, 袁晴雨, 詹明悦, 周水云, 胡文海 (2023). 冬季低温对3种常绿阔叶植物阳生叶和阴生叶光抑制的影响. 植物资源与环境学报, 32(2), 65-72.] | |
[12] |
Ivanov A, Sane P, Zeinalov Y, Malmberg G, Gardeström P, Huner N, Öquist G (2001). Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Planta, 213, 575-585.
PMID |
[13] |
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218.
DOI PMID |
[14] |
Li L, Chen JK (2014). Influence of climate change on wild plants and the conservation strategies. Biodiversity Science, 22, 549-563.
DOI |
[黎磊, 陈家宽 (2014). 气候变化对野生植物的影响及保护对策. 生物多样性, 22, 549-563.]
DOI |
|
[15] | Li ZZ, Li XM, Rubert-Nason KF, Yang Q, Fu Q, Feng JC, Shi S (2018). Photosynthetic acclimation of an evergreen broadleaved shrub (Ammopiptanthus mongolicus) to seasonal climate extremes on the Alxa Plateau, a cold desert ecosystem. Trees, 32, 603-614. |
[16] | Lin X (2010). Response of Germination and Growth in Ficus concinna var. subsessilis to Some Ecological Factors. PhD dissertation, Beijing Forestry University, Beijing. |
[林霞 (2010). 无柄小叶榕发芽与生长对不同生态因子的响应研究. 博士学位论文, 北京林业大学, 北京.] | |
[17] | Liu YM, Liu YX, Zeng GX, Huang XG (2015). Climatic regionalization of Jinggang pomelo planting in Ji’an area based on GIS. Acta Agriculturae Jiangxi, 27(6), 130-133. |
[刘云萌, 刘云霞, 曾广旭, 黄祥光 (2015). 基于GIS的吉安地区井冈蜜柚特色果业种植气候区划. 江西农业学报, 27(6), 130-133.] | |
[18] | Lv JJ, Wu JG (2009). Advances in the effects of climate change on the distribution of plant species and vegetation in China. Environmental Science & Technology, 32(6), 85-95. |
[吕佳佳, 吴建国 (2009). 气候变化对植物及植被分布的影响研究进展. 环境科学与技术, 32(6), 85-95.] | |
[19] |
Martínez-Ferri E, Manrique E, Valladares F, Balaguer L (2004). Winter photoinhibition in the field involves different processes in four co-occurring Mediterranean tree species. Tree Physiology, 24, 981-990.
PMID |
[20] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668.
DOI PMID |
[21] | Míguez F, Fernández-Marín B, Becerril JM, García-Plazaola JI (2017). Diversity of winter photoinhibitory responses: a case study in co-occurring lichens, mosses, herbs and woody plants from subalpine environments. Physiologia Plantarum, 160, 282-296. |
[22] | Nilsen ET, Arora R, Upmanyu M (2014). Thermonastic leaf movements in Rhododendron during freeze-thaw events: patterns, functional significances, and causes. Environmental and Experimental Botany, 106, 34-43. |
[23] | Oh S, Koh SC (2014). Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field. Horticulture, Environment, and Biotechnology, 55, 363-371. |
[24] |
Öquist G, Huner NPA (2003). Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology, 54, 329-355.
PMID |
[25] | Pei W (2013). Measurements of Physiological Indicators of Nine Evergreen Magnoliaceae Plants in Low Temperature and Cold Tolerance Evaluations. Master degree dissertation, Henan Agricultural University, Zhengzhou. |
[裴文 (2013). 九种木兰科常绿植物低温冷害生理指标的测定及耐寒性评价. 硕士学位论文, 河南农业大学, 郑州.] | |
[26] | Peng JG, Jiang XR, Jia MX, Guo L, Gao RF, Liu Y (2016). Contrasting patterns of sun-red and shade-green leaves of Buxus microphylla in response to gradients of excess light during winter acclimation. Acta Physiologiae Plantarum, 38, 254. DOI: 10.1007/s11738-016-2274-8. |
[27] | Shao WP (2009). Study on Cold Resistance of Evergreen Broad-leaved Plants. Master degree dissertation, Shandong Agricultural University, Tai’an, Shandong. |
[邵文鹏 (2009). 几种常绿阔叶植物抗寒性研究. 硕士学位论文, 山东农业大学, 山东泰安.] | |
[28] | Shi SB, Zhou DW, Li TC, De KJ, Gao XZ, Ma JL, Sun T, Wang FL (2023). Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau. Chinese Journal of Plant Ecology, 47, 361-373. |
[师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳 (2023). 青藏高原高山嵩草光合功能对模拟夜间低温的响应. 植物生态学报, 47, 361-373.]
DOI |
|
[29] | Su B, Gao XJ, Xiao CD (2019). Interpretation of IPCC SR1.5 on cryosphere change and its impacts. Climate Change Research, 15, 395-404. |
[苏勃, 高学杰, 效存德 (2019). IPCC《全球1.5 ℃增暖特别报告》冰冻圈变化及其影响解读. 气候变化研究进展, 15, 395-404.] | |
[30] | Tang Y, Wang CK (2011). A feasible method for measuring photosynthesis in vitro for major tree species in northeastern China. Chinese Journal of Plant Ecology, 35, 452-462. |
[唐艳, 王传宽 (2011). 东北主要树种光合作用可行的离体测定方法. 植物生态学报, 35, 452-462.]
DOI |
|
[31] | Venn SE, Green K (2018). Evergreen alpine shrubs have high freezing resistance in spring, irrespective of snowmelt timing and exposure to frost: an investigation from the Snowy Mountains, Australia. Plant Ecology, 219, 209-216. |
[32] | Wang N, Wang KL, Liu QH, Liu QC (2016). Cold resistance of four evergreen broad-leaved tree species. Chinese Journal of Applied Ecology, 27, 3114-3122. |
[王娜, 王奎玲, 刘庆华, 刘庆超 (2016). 四种常绿阔叶树种的抗寒性. 应用生态学报, 27, 3114-3122.]
DOI |
|
[33] | Wang X, Peng Y, Singer JW, Fessehaie A, Krebs SL, Arora R (2009). Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: a comparison of photoprotective strategies in overwintering plants. Plant Science, 177, 607-617. |
[34] | Xu DQ (2006). Some noteworthy problems in measurement and investigation of photosynthesis. Plant Physiology Communications, 42, 1163-1167. |
[许大全 (2006). 光合作用测定及研究中一些值得注意的问题. 植物生理学通讯, 42, 1163-1167.] | |
[35] | Xu DQ (2013). The Science of Photosynthesis. Science Press, Beijing. |
[许大全 (2013). 光合作用学. 科学出版社, 北京.] | |
[36] | Yamazaki JY, Kamata K, Maruta E (2011). Seasonal changes in the excess energy dissipation from Photosystem II antennae in overwintering evergreen broad-leaved trees Quercus myrsinaefolia and Machilus thunbergii. Journal of Photochemistry and Photobiology B: Biology, 104, 348-356. |
[37] | Yamazaki JY, Tsuchiya S, Nagano S, Maruta E (2007). Photoprotective mechanisms against winter stresses in the needles of Abies mariesii grown at the tree line on Mt. Norikura in Central Japan. Photosynthetica, 45, 547-554. |
[38] | Yang J (2008). Reasearch of Drought and Cold Stress Resistance and Analysis of Cultivating Adaptability of Photinia × frasri. Master degree dissertation, Shandong Agricultural University, Tai’an, Shandong. |
[杨静 (2008). 红叶石楠抗旱性与抗寒性研究及引种适应性分析. 硕士学位论文, 山东农业大学, 山东泰安.] | |
[39] | Ye Z, Robakowski P, Suggett DJ (2013). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 237, 837-847. |
[40] | Zhang Q, Guo CY, Zhang XW, Bai KD, Jiang DB (2015). Photosynthesis and antioxidant defense strategies in overwintering plants of Tsuga chinensis and Cyclobalanopsis stewardiana. Bulletin of Botanical Research, 35, 200-207. |
[张强, 郭传友, 张兴旺, 白坤栋, 蒋得斌 (2015). 基于光合作用和抗氧化机制的南方铁杉和褐叶青冈越冬策略研究. 植物研究, 35, 200-207.]
DOI |
[1] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 湖南东部植被恢复对土壤有机碳矿化的影响[J]. 植物生态学报, 2018, 42(12): 1211-1224. |
[2] | 刘佳, 项文化, 徐晓, 陈瑞, 田大伦, 彭长辉, 方晰. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8): 938-945. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19