植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 343-355.DOI: 10.17521/cjpe.2023.0363 cstr: 32100.14.cjpe.2023.0363
王堃莹1, 邱贵福4, 刘子赫1, 孟君1, 刘宇轩1, 贾国栋1,2,3,*()
收稿日期:
2023-12-06
接受日期:
2024-09-18
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*贾国栋: (jiaguodong@bjfu.edu.cn)基金资助:
WANG Kun-Ying1, QIU Gui-Fu4, LIU Zi-He1, MENG Jun1, LIU Yu-Xuan1, JIA Guo-Dong1,2,3,*()
Received:
2023-12-06
Accepted:
2024-09-18
Online:
2025-02-20
Published:
2025-02-20
Supported by:
摘要: 小叶杨(Populus simonii)作为中国北方重要防护树种, 其大面积衰退对生态系统健康发展及防护林持续经营产生了严重影响, 探究气候变化背景下小叶杨退化原因可为人工林的管理经营提供参考。该研究调查了张北县3种不同退化程度的小叶杨人工林, 将其胸高断面积增量(BAI)、内在水分利用效率(iWUE)、树轮碳稳定同位素比值和气孔调节策略进行对比, 从而分析了气候变化对小叶杨生长和iWUE的影响。结果显示: 1) CO2浓度和气温是iWUE变化的主要驱动因素, 在大气CO2浓度增加、气候变化和生理状况综合影响下, 小叶杨的iWUE呈现明显增加趋势, 不同退化程度小叶杨BAI均呈先增后减趋势。2) 3种不同退化程度小叶杨林分的生长主要受气温影响, 大多数情况下研究区iWUE的增加并不能促进树木生长。3)气候变化背景下, 衰退树木对干旱更为敏感, 干旱胁迫下, 退化程度大的林分采取更为严格的气孔策略。4) CO2浓度增加及气温上升的促进作用无法抵消干旱胁迫加剧对树木生理机能的不利影响, 长期干旱胁迫可能导致退化树木生长进一步衰退。
王堃莹, 邱贵福, 刘子赫, 孟君, 刘宇轩, 贾国栋. 气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节. 植物生态学报, 2025, 49(2): 343-355. DOI: 10.17521/cjpe.2023.0363
WANG Kun-Ying, QIU Gui-Fu, LIU Zi-He, MENG Jun, LIU Yu-Xuan, JIA Guo-Dong. Climate change regulate tree growth and intrinsic water use efficiency of Populus simonii at different levels of degradation. Chinese Journal of Plant Ecology, 2025, 49(2): 343-355. DOI: 10.17521/cjpe.2023.0363
图1 张北县3种不同退化程度的小叶杨人工林位置和采样点分布图。
Fig. 1 Location and sampling sites distribution of Populus simonii plantation forests with three degradation levels in Zhangbei.
退化等级 Degradation level | 衰退树木比率 Rate of dieback trees (%) | 树高 Height (m) | 胸径 DBH (cm) | 叶面积指数 LAI | 密度 Density (·hm-2) | 采样点数量 (小区数量) Sites (subplots) | 海拔 Altitude (m) |
---|---|---|---|---|---|---|---|
正常生长 Normal growth | <20 | 13.88 ± 4.25a | 22.15 ± 2.25a | 2.06 ± 0.96a | 1 042 ± 532 | 9 (3) | 1 250-1 275 |
轻度退化 Mild degradation | 20-60 | 10.82 ± 2.25a | 17.62 ± 1.86a | 1.30 ± 0.53ab | 1 650 ± 839 | 9 (3) | 1 238-1 285 |
重度退化 Severe degradation | >60 | 8.95 ± 2.25b | 13.71 ± 1.64b | 0.98 ± 0.21c | 728 ± 230 | 9 (3) | 1 256-1 286 |
表1 不同退化程度小叶杨人工林样地信息统计(平均值±标准差)
Table 1 Statistical information on sample plots of Populus simonii plantations at different levels of degradation (mean ± SD)
退化等级 Degradation level | 衰退树木比率 Rate of dieback trees (%) | 树高 Height (m) | 胸径 DBH (cm) | 叶面积指数 LAI | 密度 Density (·hm-2) | 采样点数量 (小区数量) Sites (subplots) | 海拔 Altitude (m) |
---|---|---|---|---|---|---|---|
正常生长 Normal growth | <20 | 13.88 ± 4.25a | 22.15 ± 2.25a | 2.06 ± 0.96a | 1 042 ± 532 | 9 (3) | 1 250-1 275 |
轻度退化 Mild degradation | 20-60 | 10.82 ± 2.25a | 17.62 ± 1.86a | 1.30 ± 0.53ab | 1 650 ± 839 | 9 (3) | 1 238-1 285 |
重度退化 Severe degradation | >60 | 8.95 ± 2.25b | 13.71 ± 1.64b | 0.98 ± 0.21c | 728 ± 230 | 9 (3) | 1 256-1 286 |
图3 张北县气温、降水量、相对湿度和年度饱和水汽压差(VPD)的年际变化。
Fig. 3 Interannual variation of temperature, precipitation, relative humidity and annual vapor pressure deficit (VPD) in Zhangbei.
图4 张北县不同退化程度小叶杨胸高断面积增量(BAI)和内在水分利用效率(iWUE) (平均值±标准差)。不同大写字母表示不同退化程度之间iWUE差异显著, 不同小写字母表示不同退化程度之间BAI差异显著(p < 0.05)。
Fig. 4 Basal area increment (BAI) and intrinsic water use efficiency (iWUE) of Populus simonii at different degradation levels in Zhangbei (mean ± SD). Different uppercase letters indicate significant differences in iWUE between degradation levels, and different lowercase letters indicate significant differences in BAI between degradation levels (p < 0.05).
图5 张北县不同退化程度小叶杨树轮纤维素碳稳定同位素值(δ13C)和树轮中13C判别值(Δ13C)变化趋势及对比(平均值±标准差)。不同退化程度之间δ13C的显著差异(p < 0.05)用不同大写字母表示, 不同退化程度之间Δ13C的显著差异(p < 0.05)用不同小写字母表示。
Fig. 5 Trends and comparisons of carbon stable isotope values of tree ring cellulose (δ13C) and 13C discrimination in the tree ring (Δ13C) changes in Populus simonii with different degradation levels in Zhangbei (mean ± SD). Significant differences (p < 0.05) in δ13C between different degrees of degradation are indicated by different uppercase letters, and significant differences (p < 0.05) in Δ13C between different degrees of degradation are indicated by different lowercase letters.
图6 不同退化程度小叶杨胞间CO2浓度(Ci)及Ci与大气CO2浓度(Ca)比值。不同退化程度之间Ci的显著差异(p < 0.05)用不同小写字母表示, 不同退化程度之间Ci/Ca的显著差异(p < 0.05)用不同大写字母表示。
Fig. 6 Intercellular CO2 concentration (Ci) and the ratio of Ci to atmospheric CO2 concentration (Ca) in Populus simonii with different degradation levels. Significant differences (p < 0.05) in Ci between different degrees of degradation are indicated by different lowercase letters, and significant differences (p < 0.05) in Ci/Ca between different degrees of degradation are indicated by different uppercase letters.
图7 不同退化程度小叶杨胸高断面积增量(BAI)和内在水分利用效率(iWUE)与年际气象因子相关系数。*和**分别代表显著性水平小于0.05和0.01。A、B和C代表BAI、iWUE与2000年前气象因子相关性, D、E和F代表2000年后气象因子相关性。BAIn、BAIm和BAIs分别表示正常、轻度退化和重度退化林分的BAI。P, 降水量; PDSI, 帕默尔干旱指数; RH, 相对湿度; T, 气温; VPD, 饱和水汽压差。
Fig. 7 Correlation coefficients among basal area increment (BAI), intrinsic water use efficiency (iWUE) and inter-annual meteorological factors of Populus simonii with different degradation levels. * and ** represent significance levels less than 0.05 and 0.01, respectively. Figures A, B and C show BAI and iWUE correlations with pre-2000 meteorological factors, and Figures D, E and F show post-2000 meteorological factor correlations. BAIn, BAIm and BAIs represent BAI in normal, mild and severely degraded stands, respectively. P, precipitation; PDSI, Palmer drought severity index; RH, relative humidity; T, air temperature; VPD, vapor pressure deficit.
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
T | 60.35 | 16.71 | 49.18 | 14.19 | 35.99 | 16.71 |
T+PDSI | 61.41 | 18.50 | 49.82 | 15.53 | 35.50 | 18.50 |
RH+PDSI | 59.31 | 14.75 | 59.31 | 16.63 | 43.72 | 17.99 |
P+T+PDSI | 63.14 | 20.46 | 51.53 | 17.44 | 36.87 | 20.46 |
T+RH+VPD+PDSI | 53.52 | 17.63 | 53.52 | 18.67 | 39.32 | 21.84 |
P+T+RH+VPD+PDSI | 67.07 | 19.61 | 55.32 | 20.66 | 40.74 | 23.80 |
表2 小叶杨胸高断面积增量(BAI)与气象因子逐步回归模型的赤池信息量准则(AIC)值
Table 2 Akaike Information Criterion (AIC) values of stepwise regression between basal area increment (BAI) and meteorological factors for Populus simonii
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
T | 60.35 | 16.71 | 49.18 | 14.19 | 35.99 | 16.71 |
T+PDSI | 61.41 | 18.50 | 49.82 | 15.53 | 35.50 | 18.50 |
RH+PDSI | 59.31 | 14.75 | 59.31 | 16.63 | 43.72 | 17.99 |
P+T+PDSI | 63.14 | 20.46 | 51.53 | 17.44 | 36.87 | 20.46 |
T+RH+VPD+PDSI | 53.52 | 17.63 | 53.52 | 18.67 | 39.32 | 21.84 |
P+T+RH+VPD+PDSI | 67.07 | 19.61 | 55.32 | 20.66 | 40.74 | 23.80 |
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
PDSI | 56.09 | 40.80 | 73.23 | 58.40 | 78.36 | 59.71 |
T+PDSI | 58.06 | 40.39 | 45.22 | 60.36 | 77.94 | 59.23 |
T+VPD | 65.48 | 37.12 | 74.35 | 60.63 | 79.61 | 61.78 |
P+PDSI | 54.72 | 42.80 | 75.14 | 59.98 | 79.36 | 61.71 |
T+VPD+PDSI | 60.05 | 39.03 | 76.05 | 62.36 | 78.79 | 60.14 |
P+T+RH+PDSI | 58.19 | 44.33 | 78.27 | 63.90 | 80.80 | 63.14 |
P+T+RH+VPD+PDSI | 60.14 | 42.54 | 79.00 | 65.89 | 81.99 | 63.67 |
表3 小叶杨内在水分利用效率(iWUE)与气象因子逐步回归模型的赤池信息量准则(AIC)值
Table 3 Akaike Information Criterion (AIC) values of stepwise regression between intrinsic water use efficiency (iWUE) and meteorological factors for Populus simonii
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
PDSI | 56.09 | 40.80 | 73.23 | 58.40 | 78.36 | 59.71 |
T+PDSI | 58.06 | 40.39 | 45.22 | 60.36 | 77.94 | 59.23 |
T+VPD | 65.48 | 37.12 | 74.35 | 60.63 | 79.61 | 61.78 |
P+PDSI | 54.72 | 42.80 | 75.14 | 59.98 | 79.36 | 61.71 |
T+VPD+PDSI | 60.05 | 39.03 | 76.05 | 62.36 | 78.79 | 60.14 |
P+T+RH+PDSI | 58.19 | 44.33 | 78.27 | 63.90 | 80.80 | 63.14 |
P+T+RH+VPD+PDSI | 60.14 | 42.54 | 79.00 | 65.89 | 81.99 | 63.67 |
月份 Month | BAIn | BAIm | BAIs |
---|---|---|---|
1 | 0.18 | 0.24 | 0.26 |
2 | <0.01** | <0.01** | <0.01** |
3 | 0.26 | 0.28 | 0.22 |
4 | 0.23 | 0.22 | 0.19 |
5 | 0.20 | 0.19 | 0.16 |
6 | 0.04* | 0.04* | 0.29 |
7 | <0.01** | <0.01** | 0.27 |
8 | <0.01** | <0.01** | 0.04* |
9 | <0.01** | <0.01** | <0.01** |
10 | 0.11 | 0.05 | 0.01* |
11 | 0.20 | 0.23 | 0.20 |
12 | 0.06 | 0.01 | 0.12 |
表4 月平均气温对小叶杨胸高断面积增量(BAI)的影响
Table 4 Effect of monthly mean air temperature on basal area increment (BAI) for Populus simonii
月份 Month | BAIn | BAIm | BAIs |
---|---|---|---|
1 | 0.18 | 0.24 | 0.26 |
2 | <0.01** | <0.01** | <0.01** |
3 | 0.26 | 0.28 | 0.22 |
4 | 0.23 | 0.22 | 0.19 |
5 | 0.20 | 0.19 | 0.16 |
6 | 0.04* | 0.04* | 0.29 |
7 | <0.01** | <0.01** | 0.27 |
8 | <0.01** | <0.01** | 0.04* |
9 | <0.01** | <0.01** | <0.01** |
10 | 0.11 | 0.05 | 0.01* |
11 | 0.20 | 0.23 | 0.20 |
12 | 0.06 | 0.01 | 0.12 |
[1] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[2] | Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011). Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change Biology, 17, 2095-2112. |
[3] | Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Korner C (2013). Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology, 101, 1509-1519. |
[4] | Bigler C, Veblen TT (2009). Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos, 118, 1130-1138. |
[5] | Boysen LR, Lucht W, Gerten D, Heck V, Lenton TM, Schellnhuber HJ (2017). The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future, 5, 463-474. |
[6] | Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008). Plantation forests and biodiversity: oxymoron or opportunity? Biodiversity and Conservation, 17, 925-951. |
[7] | Chen XJ, Yuan YJ, Chen F, Zhang RB, Zhang TW (2008). Analysis of tree-ring width chronology characteristics from eastern area on north slope of Tianshan Mountains. Journal of Desert Research, 28, 833-841. |
[陈向军, 袁玉江, 陈峰, 张瑞波, 张同文 (2008). 天山北坡东部地区树轮宽度年表特征分析. 中国沙漠, 28, 833-841.] | |
[8] | Cowan IR (1978). Stomatal behaviour and environment. Advances in Botanical Research, 4, 117-228. |
[9] | Du MM, Zhang F, Gou XH, Liu LY, Xia JQ, Wu XP (2022). Different responses of radial growth of Picea crassifolia to climate warming in the middle and eastern Qilian Mountains. Journal of Glaciology and Geocryology, 44(1), 14-23. |
[杜苗苗, 张芬, 勾晓华, 刘兰娅, 夏敬清, 吴秀平 (2022). 祁连山中东部青海云杉径向生长对气候变暖的响应差异. 冰川冻土, 44(1), 14-23.]
DOI |
|
[10] | Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJE, van Oosterzee P, MacKenzie J, Morning HS, Burrows D (2017). Large-scale dieback of mangroves in Australia. Marine and Freshwater Research, 68, 1816-1829. |
[11] | Fang SZ (2008). Silviculture of poplar plantation in China: a review. Chinese Journal of Applied Ecology, 19, 2308-2316. |
[方升佐 (2008). 中国杨树人工林培育技术研究进展. 应用生态学报, 19, 2308-2316.] | |
[12] | Farquhar GD, And JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537. |
[13] | Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology, 9, 121-137. |
[14] | Fernández ME, Gyenge J, Schlichter T (2009). Water flux and canopy conductance of natural versus planted forests in Patagonia, South America. Trees, 23, 415-427. |
[15] |
Granda E, Rossatto DR, Camarero JJ, Voltas J, Valladares F (2014). Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought. Oecologia, 174, 307-317.
DOI PMID |
[16] | Griffis TJ (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174, 85-109. |
[17] | Guariguata MR, Ostertag R (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185-206. |
[18] | Guo D, Kasim T, Wu XL, Zhang TW, Wang ZP, Abudureheman R, Ayimuguli S (2022). Applicability of four meteorological drought indices in Xinjiang. Desert and Oasis Meteorology, 16(3), 90-101. |
[郭冬, 吐尔逊·哈斯木, 吴秀兰, 张同文, 王兆鹏, 如先古丽·阿不都热合曼, 阿依姆古丽·赛麦提 (2022). 四种气象干旱指数在新疆区域适用性研究. 沙漠与绿洲气象, 16(3), 90-101.] | |
[19] | Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007). Response of forest trees to increased atmospheric CO2. Critical Reviews in Plant Sciences, 26, 265-283. |
[20] | Jump AS, Hunt JM, Peñuelas J (2006). Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12, 2163-2174. |
[21] | Kharuk VI, Ranson KJ, Oskorbin PA, Im ST, Dvinskaya ML (2013). Climate induced birch mortality in Trans-Baikal lake region, Siberia. Forest Ecology and Management, 289, 385-392. |
[22] | Kimak A, Leuenberger M (2015) Are carbohydrate storage strategies of trees traceable by early-latewood carbon isotope differences? Trees, 29, 859-870. |
[23] | Körner C (2006). Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393-411. |
[24] | Kwak JH, Lim SS, Lee KS, Viet HD, Matsushima M, Lee KH Jung K, Kim HY, Lee SM, Chang S, Choi WJ (2016). Temperature and air pollution affected tree ring δ13C and water-use efficiency of pine and oak trees under rising CO2 in a humid temperate forest. Chemical Geology, 420, 127-138. |
[25] |
Lavergne A, Voelker S, Csank A, Graven H, de Boer HJ, Daux V, Robertson I, Dorado-Liñán I, Martínez-Sancho E, Battipaglia G, Bloomfield KJ, Still CJ, Meinzer FC, Dawson TE, Camarero J, et al. (2020). Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytologist, 225, 2484-2497.
DOI PMID |
[26] | Leavitt SW (2010). Tree-ring C-H-O isotope variability and sampling. Science of the Total Environment, 408, 5244-5253. |
[27] |
Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 203, 94-109.
DOI PMID |
[28] | Li S, Luo YQ, Wu J, Zong SX, Yao GL, Li Y, Liu YM, Zhang YR (2009). Community structure and biodiversity in plantations and natural forests of seabuckthorn in southern Ningxia, China. Forestry Studies in China, 11, 49-54. |
[29] | Liu N, Sun PS, Liu SR (2012). Research advances in simulating land water-carbon coupling. Chinese Journal of Applied Ecology, 23, 3187-3196. |
[刘宁, 孙鹏森, 刘世荣 (2012). 陆地水-碳耦合模拟研究进展. 应用生态学报, 23, 3187-3196.] | |
[30] | Liu XH, Wang WZ, Xu GB, Zeng XM, Wu GJ, Zhang XW, Qin DH (2014). Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China:evaluation via δ13C and δ18O analysis of tree rings. Tree Physiology, 34, 966-980. |
[31] | Liu Y, Li P, Shen B, Feng ZH, Liu Q, Zhang Y (2017). Effects of drought stress on Bothriochloa ischaemum water-use efficiency based on stable carbon isotope. Acta Ecologica Sinica, 37, 3055-3064. |
[刘莹, 李鹏, 沈冰, 冯朝红, 刘琦, 张祎 (2017). 采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率. 生态学报, 37, 3055-3064.] | |
[32] | Lucarini V, Ragone F, Lunkeit F (2017). Predicting climate change using response theory: global averages and spatial patterns. Journal of Statistical Physics, 166, 1036-1064. |
[33] |
Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014). A new look at water transport regulation in plants. New Phytologist, 204, 105-115.
DOI PMID |
[34] |
Maseyk K, Hemming D, Angert A, Leavitt SW, Yakir D (2011). Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia, 167, 573-585.
DOI PMID |
[35] | Matsuo K, Heki K (2012). Anomalous precipitation signatures of the Arctic Oscillation in the time-variable gravity field by GRACE. Geophysical Journal International, 190, 1495-1506. |
[36] | Nardini A, Casolo V, Dal Borgo A, Savi T, Stenni B, Bertoncin P, Zini LC, McDowell NG (2016). Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell & Environment, 39, 618-627. |
[37] |
Oishi AC, Miniat CF, Novick KA, Brantley ST, Vose JM, Walker JT (2018). Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agricultural and Forest Meteorology, 252, 269-282.
DOI PMID |
[38] | Peñuelas J, Canadell JG, Ogaya R (2011). Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 20, 597-608. |
[39] | Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008). Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14, 1076-1088. |
[40] |
Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347.
DOI PMID |
[41] | Resco V, Ferrio JP, Carreira JA, Calvo L, Casals P, Ferrero-Serrano Á, Marcos E, Moreno JM, Ramírez DA, Sebastià MT, Valladares F, Williams DG (2011). The stable isotope ecology of terrestrial plant succession. Plant Ecology & Diversity, 4, 117-130. |
[42] | Saurer M, Siegwolf RT, Schweingruber FH (2004). Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 10, 2109-2120. |
[43] | Shen XJ, Liu BH, Xue ZS, Jiang M, Lu XG, Zhang Q (2019). Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Science of the Total Environment, 666, 1169-1177. |
[44] | Sun LB (2021). Study on Degradation Mechanism of Populus simonii Plantation in Bashang Area. PhD dissertation, Beijing Forestry University. Beijing. |
[孙立博 (2021). 坝上地区小叶杨人工林退化机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[45] | Sun LB, Chang XM, Yu XX, Jia GD, Chen LH, Liu ZQ, Zhu XH (2019). Precipitation and soil water thresholds associated with drought-induced mortality of farmland shelter forests in a semi-arid area. Agriculture, Ecosystems & Environment, 284, 106595. DOI: 10.1016/j.agee.2019.106595. |
[46] | Sun SJ, Li CY, He CX, Zhang JS, Meng P (2017). Retrospective analysis of the poplar plantation degradation based on stable carbon isotope of tree rings in Zhangbei County, Hebei, China. Chinese Journal of Applied Ecology, 28, 2119-2127. |
[孙守家, 李春友, 何春霞, 张劲松, 孟平 (2017). 基于树轮稳定碳同位素的张北杨树防护林退化原因解析. 应用生态学报, 28, 2119-2127.]
DOI |
|
[47] | van der Sleen P, Groenendijk P, Vlam M, Anten NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2015). No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience, 8, 24-28. |
[48] |
Voelker SL, Brooks JR, Meinzer FC, Anderson R, Bader MKF, Battipaglia G, Becklin KM, Beerling D, Bert D, Betancourt JL, Dawson TE, Domec JC, Guyette RP, Körner C, Leavitt SW, et al. (2016). A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Global Change Biology, 22, 889-902.
DOI PMID |
[49] | Voelker SL, Muzika RM, Guyette RP, Stambaugh MC (2006). Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecological Monographs, 76, 549-564. |
[50] | Voltas J, Camarero JJ, Carulla D, Aguilera M, Ortiz A, Ferrio JP (2013). A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell & Environment, 36, 1435-1448. |
[51] | Wang WZ, Liu XH, An WL, Xu GB, Zeng XM (2012). Increased intrinsic water-use efficiency during a period with persistent decreased tree radial growth in Northwestern China: causes and implications. Forest Ecology and Management, 275, 14-22. |
[52] | Wang WZ, McDowell NG, Pennington S, Grossiord C, Leff RT, Sengupta A, Ward ND, Sezen UU, Rich R, Megonigal JP, Stegen JC, Bond-Lamberty B, Bailey V (2020). Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest. Agricultural and Forest Meteorology, 295, 108163. DOI: 10.1016/j.agrformet.2020.108163. |
[53] | Wehr R, Commane R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Saleska SR, Wofsy SC (2017). Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences, 14, 389-401. |
[54] | Wei J, Ma ZG (2003). Comparison of Palmer drought index, surface wetness index and precipitation anomaly. Acta Geographica Sinica, 58(S1), 117-124. |
[卫捷, 马柱国 (2003). Palmer干旱指数、地表湿润指数与降水距平的比较. 地理学报, 58(S1), 117-124.] | |
[55] | Wei JS, Li ZS, Feng XY, Zhang Y, Chen WL, Wu X, Jiao L, Wang XC (2018). Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: a review. Chinese Journal of Applied Ecology, 29, 2433-2444. |
[韦景树, 李宗善, 冯晓玙, 张园, 陈维梁, 伍星, 焦磊, 王晓春 (2018). 黄土高原人工刺槐林生长衰退的生态生理机制. 应用生态学报, 29, 2433-2444.]
DOI |
|
[56] | Wei P, Xu L, Pan XB, Hu Q, Li QY, Zhang XT, Shao CX, Wang CC, Wang XX (2020). Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30 years in Inner Mongolia, China. Catena, 185, 104298. DOI: 10.1016/j.catena.2019.104298. |
[57] | Wu GJ, Liu XH, Chen T, Xu GB, Wang WZ, Zeng XM, Wang B, Zhang XW (2015). Long-term variation of tree growth and intrinsic water-use efficiency in Schrenk spruce with increasing CO2 concentration and climate warming in the western Tianshan Mountains, China. Acta Physiologiae Plantarum, 37, 150. DOI: 10.1007/s11738-015-1903-y. |
[58] | Zadworny M, Jagodziński AM, Łakomy P, Mucha J, Oleksyn J, Rodríguez-Calcerrada J, Ufnalski K (2019). Regeneration origin affects radial growth patterns preceding oak decline and death—Insights from tree-ring δ13C and δ18O. Agricultural and Forest Meteorology, 278, 107685. DOI: 10.1016/j.agrformet.2019.107685. |
[59] | Zhu JJ, Zheng X (2019). The prospects of development of the Three-North Afforestation Program (TNAP): on the basis of the results of the 40-year construction general assessment of the TNAP. Chinese Journal of Ecology, 38, 1600-1610. |
[朱教君, 郑晓 (2019). 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 38, 1600-1610.] |
[1] | 冯梅 欧阳胜男 Matthias Saurer 李迈和 周晓倩 铁烈华 申卫军 段洪浪 Arthur Gessler. 前期氮添加对无梗花栎幼苗干旱响应中地上-地下碳氮分配动态的影响[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[2] | 周志琼 丁建林 李晓明 何其华. 西南山地人工林生物长期监测样地物种组成与群落特征数据集[J]. 植物生态学报, 2025, 49(典型生态系统数据集): 0-0. |
[3] | 刘柯言 韩璐 宋午椰 张初蕊 胡旭 许行 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J]. 植物生态学报, 2025, 49(3): 415-431. |
[4] | 赵洪贤 Peng Liu 史曼英 徐铭泽 贾昕 田赟 查天山. 毛乌素沙地典型固沙植物油蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
[5] | 赵梦扬, 庄淏然, 许德浩, 马国荣, 马永成, 冯克鹏. 干旱半干旱地区灌区玉米农田土壤植物大气连续体系统氢氧稳定同位素特征及其影响因素[J]. 植物生态学报, 2025, 49(2): 256-267. |
[6] | 邵畅畅, 段洪浪, 赵熙州, 丁贵杰. 树木干旱死亡点预测及致死生理机制研究进展[J]. 植物生态学报, 2025, 49(2): 221-231. |
[7] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[8] | 吴风燕, 吴永胜, 陈晓涵, 冯骥, 卢丽媛, 查斯娜, 王超宇, 孟元发, 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率的时空变化特征[J]. 植物生态学报, 2024, 48(9): 1180-1191. |
[9] | 童郁强, 吴梦鸽, 王玲, 赵实, 韩叙, 张彤, 刘静, 秦胜金, 董英豪, 魏亚伟, 周永斌. 基于液流径向变化的樟子松蒸腾耗水量估算及影响因素[J]. 植物生态学报, 2024, 48(9): 1118-1127. |
[10] | 周红娟, 刘子赫, 刘柯言, 张初蕊, 胡旭, 韩璐, 陈立欣. 不同降雨条件下北京土石山区混生乔灌植物的水分吸收和生态位特征[J]. 植物生态学报, 2024, 48(9): 1089-1103. |
[11] | 史倩, 同小娟, 许玲玲, 孟平, 于裴洋, 李俊, 杨铭鑫. 油松早晚材径向生长对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 988-1000. |
[12] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[13] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[14] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[15] | 陈以恒, 玉素甫江•如素力, 阿卜杜热合曼•吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19