植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 256-267.DOI: 10.17521/cjpe.2024.0037 cstr: 32100.14.cjpe.2024.0037
赵梦扬1, 庄淏然1, 许德浩1, 马国荣1, 马永成1, 冯克鹏1,2,3,4,*()
收稿日期:
2024-02-04
接受日期:
2024-05-22
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*冯克鹏: (E-mail: fengkp@nxu.edu.cn)基金资助:
ZHAO Meng-Yang1, ZHUANG Hao-Ran1, XU De-Hao1, MA Guo-Rong1, MA Yong-Cheng1, FENG Ke-Peng1,2,3,4,*()
Received:
2024-02-04
Accepted:
2024-05-22
Online:
2025-02-20
Published:
2025-02-20
Supported by:
摘要: 为探究干旱半干旱地区灌区玉米(Zea mays)农田土壤植物大气连续体(SPAC)系统各组分氢氧稳定同位素(D、18O)的变化特征及其影响因素, 该研究以宁夏青铜峡灌区作为研究区, 通过采集玉米生育期内土壤水、植株水、大气水、灌溉水及大气降水样本, 分析其D和18O组成, 运用灌溉水线、土壤水线、玉米根茎部水线以及当地大气降水线, 结合相关分析、Craig-Gordon模型以及同位素分离蒸散组分方法, 研究了农田、土壤、大气水分的同位素变化特征及其与环境因素的关系。结果表明: (1)大气降水、灌溉和蒸发作用可以直接影响土壤水氢氧稳定同位素比值(δD、δ18O); 地表风速是影响土壤水δD、δ18O的主要环境因素。(2)玉米根部和茎部水分来源一致, 玉米根部在吸水过程中相对于0-100 cm混合土壤水发生同位素富集, 水分在由玉米根部向茎部运输的过程中氢氧稳定同位素出现贫化。(3)玉米农田生态系统大气2 m处δ18O在整个研究时期内大于大气10 m处, 表现出分层现象, 大气水δD相对于δ18O对环境因素的变化更为敏感, 10 m处大气水同位素比值更容易受到环境因素的影响。
赵梦扬, 庄淏然, 许德浩, 马国荣, 马永成, 冯克鹏. 干旱半干旱地区灌区玉米农田土壤植物大气连续体系统氢氧稳定同位素特征及其影响因素. 植物生态学报, 2025, 49(2): 256-267. DOI: 10.17521/cjpe.2024.0037
ZHAO Meng-Yang, ZHUANG Hao-Ran, XU De-Hao, MA Guo-Rong, MA Yong-Cheng, FENG Ke-Peng. Hydrogen and oxygen stable isotope characteristics of maize fields in arid and semi-arid oasis irrigation areas with SPAC system: variability traits and influencing factors. Chinese Journal of Plant Ecology, 2025, 49(2): 256-267. DOI: 10.17521/cjpe.2024.0037
图1 青铜峡灌区玉米农田大气降水线(LMWL)、灌溉水线(IWL) (A)和0-100 cm土壤水线(SWL) (B)。δD, 氢稳定同位素比值; δ18D, 氧稳定同位素比值。
Fig. 1 Local atmospheric precipitation line (LMWL), irrigation water line (IWL) (A) and a 0-100 cm soil water line (SWL) (B) of maize farmland in the Qingtongxia irrigation area. δD, hydrogen stable isotope ratio; δ18D, oxygen stable isotope ratio.
图3 土壤水氧稳定同位素比值(δ18O) (A)和水线氘差(lc-excess) (B)的时间变化。
Fig. 3 Soil water oxygen stable isotope ratio (δ18O) (A) and line-conditioned excess (lc-excess) (B) vary over time.
图4 玉米根部、茎部水与0-100 cm土壤水氢稳定同位素比值(δD)、氧稳定同位素比值(δ18O)时间变化和玉米根部水线(RWL)、玉米茎部水线(MSWL)、0-100 cm土壤水线(SWL)。
Fig. 4 Changes in hydrogen stable isotope ratio (δD), oxygen stable isotope ratio (δ18O) and waterline of maize root water (RWL), stem water (MSWL) and 0-100 cm soil water (SWL).
图5 2和10 m处的大气水氢稳定同位素比值(δD)、氧稳定同位素比值(δ18O)及0-10 cm土壤水δD的时间变化。
Fig. 5 Variations of hydrogen stable isotope ratio (δD), oxygen stable isotope ratio (δ18O) at 2 and 10 m above the ground in the atmosphere and δD in 0-10 cm soil water over time.
图6 玉米生育期内土壤植物大气连续体(SPAC)系统氧稳定同位素比值(δ18O)均值。
Fig. 6 Mean oxygen stable isotope ratio (δ18O) in the soil-plant-atmosphere continuum (SPAC) system during the maize growth period.
图7 月累计降水量与不同深度土壤稳定同位素比值相关性。δD, 氢稳定同位素比值; δ18O, 氧稳定同位素比值。*, p < 0.05; **, p < 0.01。
Fig. 7 Monthly cumulative precipitation and correlations of stable isotope ratio in different soil depths. δD, hydrogen stable isotope ratio; δ18O, oxygen stable isotope ratio. *, p < 0.05; **, p < 0.01.
图8 1 m处饱和水汽压差(VPD1 m)、空气温度(Ta1 m)、风速(WS1 m)、相对湿度(RH1 m)、5 cm处土壤热通量(SHF5 cm)和不同深度土壤水氢稳定同位素比值(δD)、氧稳定同位素比值(δ18O)的相关关系。*, p < 0.05; **, p < 0.01。
Fig. 8 Correlations between vapor pressure deficit (VPD1 m), atmospheric temperature (Ta1 m), relative humidity (RH1 m), wind speed (WS1 m) at 1 m and soil heat flux at 5 cm above the ground (SHF5 cm) and soil water hydrogen stable isotope ratio (δD), oxygen stable isotope ratio (δ18O) in different soil depths. *, p < 0.05; **, p < 0.01.
图9 大气水氢稳定同位素比值(δD)、氧稳定同位素比值(δ18O)与2 m和10 m处风速(WS)、相对湿度(RH)、气温(Ta)、饱和水汽压差(VPD)的相关系数。Δ, 差值。*, p < 0.05。
Fig. 9 Correlation coefficients between the hydrogen stable isotope ratio (δD), oxygen stable isotope ratio (δ18O) of atmospheric water and wind speed (WS), relative humidity (RH), atmospheric temperature (Ta), and vapor pressure deficit (VPD) at 2 m and 10 m. Δ, difference. *, p < 0.05.
[1] | Barbour MM, Farquhar GD, Buckley TN (2017). Leaf water stable isotopes and water transport outside the xylem. Plant, Cell & Environment, 40, 914-920. |
[2] | Bowen GJ, Cai Z, Fiorella RP, Putman AL (2019). Isotopes in the water cycle: regional- to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences, 47, 453-479. |
[3] | Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LEOC, Barros F, Bittencourt P, Pereira L, Oliveira RS (2019). Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology, 107, 318-333. |
[4] | Cai Y, Xing WQ, Wang WG, Wu YT, Chen X (2023). Optimization of sampling scheme for evapotranspiration partition based on isotope technology. Acta Ecologica Sinica, 43, 8076-8086. |
[蔡越, 邢万秋, 王卫光, 吴宇桐, 陈顼 (2023). 基于同位素技术的蒸散组分区分采样方案优化研究. 生态学报, 43, 8076-8086.] | |
[5] | Che CW, Zhang MJ, Wang SJ, Du QQ, Ma ZZ, Meng HF, Qu DY (2020). Studying spatio-temporal variation and influencing factors of soil evaporation in southern and northern mountains of Lanzhou City based on stable hydrogen and oxygen isotopes. Geographical Research, 39, 2537-2551. |
[车存伟, 张明军, 王圣杰, 杜勤勤, 马转转, 孟鸿飞, 瞿德业 (2020). 基于氢氧稳定同位素的兰州市南北两山土壤蒸发时空变化及影响因素研究. 地理研究, 39, 2537-2551.]
DOI |
|
[6] | Chen JS, Liu XY, Wang CY, Rao WB, Tan HB, Dong HZ, Sun XX, Wang YS, Su ZG (2012). Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environmental Earth Sciences, 66, 505-517. |
[7] | Chen L, Zhang XF, Wang YQ, Gao MR, Tang JL (2021). Temporal characteristics and influencing factors of evapotranspiration and water use efficiency on sloping farmlands with purple soil. Chinese Journal of Eco- Agriculture, 29, 991-1007. |
[陈露, 章熙锋, 王艳强, 高美荣, 唐家良 (2021). 紫色土坡耕地农田生态系统蒸散发与水分利用效率及其影响因素. 中国生态农业学报, 29, 991-1007.] | |
[8] |
Cheng LP, Liu WZ (2012). Characteristics of stable isotopes in soil water under several typical land use patterns on Loess Tableland. Chinese Journal of Applied Ecology, 23, 651-658.
PMID |
[程立平, 刘文兆 (2012). 黄土塬区几种典型土地利用类型的土壤水稳定同位素特征. 应用生态学报, 23, 651-658.] | |
[9] |
Craig H (1961). Isotopic variations in meteoric waters. Science, 133, 1702-1703.
PMID |
[10] | Dansgaard W (1964). Stable isotopes in precipitation. Tellus, 16, 436-468. |
[11] |
Dawson TE, Hahm WJ, Crutchfield-Peters K (2020). Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytologist, 226, 666-671.
DOI PMID |
[12] | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu K (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507-559. |
[13] | Good SP, Soderberg K, Guan K, King EG, Scanlon TM, Caylor KK (2014). δ2H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down. Water Resources Research, 50, 1410-1432. |
[14] | Han JJ, Tian LD, Cai ZY, Ren W, Liu WW, Li J, Tai JR (2022). Season-specific evapotranspiration partitioning using dual water isotopes in a Pinus yunnanensis ecosystem, southwest China. Journal of Hydrology, 608, 127672. DOI: 10.1016/j.jhydrol.2022.127672. |
[15] | Hogan P, Parajka J, Heng L, Strauss P, Blöschl G (2020). Partitioning evapotranspiration using stable isotopes and Lagrangian dispersion analysis in a small agricultural catchment. Journal of Hydrology and Hydromechanics, 68, 134-143. |
[16] | Horita J, Rozanski K, Cohen S (2008). Isotope effects in the evaporation of water: a status report of the Craig-Gordon model. Isotopes in Environmental and Health Studies, 44, 23-49. |
[17] | Landwehr JM, Coplen TB (2006). Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems//IAEA. Isotopes in Environmental Studies. IAEA, Vienna, Austria. 132-135. |
[18] | Li JQ, Huang YN, Shi PJ, Li Z (2022). Isotopic characteristics and vapor sources of atmospheric precipitation in the loess region of North Shaanxi, China. Chinese Journal of Applied Ecology, 33, 1459-1465. |
[李佳奇, 黄亚楠, 石培君, 李志 (2022). 陕北黄土区大气降水同位素特征及其水汽来源. 应用生态学报, 33, 1459-1465.]
DOI |
|
[19] |
Li L, Tang CY, Cao YJ (2020). Hydrogen and oxygen stable isotope characteristics of water in SPAC system of evergreen broadleaved forest in subtropical region. Chinese Journal of Applied Ecology, 31, 2875-2884.
DOI |
[李龙, 唐常源, 曹英杰 (2020). 亚热带地区常绿阔叶林SPAC系统水分的氢氧稳定同位素特征. 应用生态学报, 31, 2875-2884.]
DOI |
|
[20] |
Lin FR, Gu DX, Huang YQ, He CX, Wei QS (2021). Research advances in hydraulic redistribution of plant roots. Chinese Journal of Ecology, 40, 2978-2986.
DOI |
[林芙蓉, 顾大形, 黄玉清, 何成新, 韦启生 (2021). 植物根系水力再分配的研究进展. 生态学杂志, 40, 2978-2986.] | |
[21] | Lin GH (2010). Stable isotope ecology: a new branch of ecology resulted from technology advances. Chinese Journal of Plant Ecology, 34, 119-122. |
[林光辉 (2010). 稳定同位素生态学: 先进技术推动的生态学新分支. 植物生态学报, 34, 119-122.]
DOI |
|
[22] | Lin WQ, Jia GD (2023). Research progresses on stable isotopes of water transformation in SPAC system. Journal of Nanjing Forestry University (Natural Sciences Edition), 47, 234-242. |
[林雯淇, 贾国栋 (2023). 基于稳定同位素的SPAC系统水分转化研究进展. 南京林业大学学报(自然科学版), 47, 234-242.]
DOI |
|
[23] | Ma B (2017). Evaluation of Water Fractionation and Infiltrated Precipitation Using Hydrogen and Oxygen Stable Isotopes. PhD dissertation, China University of Geosciences, Wuhan. |
[马斌 (2017). 氢氧稳定同位素指示水体分馏与降水入渗补给研究. 博士学位论文, 中国地质大学, 武汉.] | |
[24] | Mamonov AB, Coalson RD, Zeidel ML, Mathai JC (2007). Water and deuterium oxide permeability through aquaporin 1: MD predictions and experimental verification. The Journal of General Physiology, 130, 111-116. |
[25] | Maricle BR, Zwenger SR, Lee RW (2011). Carbon, nitrogen, and hydrogen isotope ratios in creekside trees in western Kansas. Environmental and Experimental Botany, 71, 1-9. |
[26] |
Moore JW, Semmens BX (2008). Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters, 11, 470-480.
DOI PMID |
[27] | Oerter EJ, Singleton M, Davisson ML (2018). Hydrogen and oxygen stable isotope dynamics of hyper-saline and salt- saturated aqueous solutions. Geochimica et Cosmochimica Acta, 238, 316-328. |
[28] | Oshun J, Dietrich WE, Dawson TE, Fung I (2016). Dynamic, structured heterogeneity of water isotopes inside hillslopes. Water Resources Research, 52, 164-189. |
[29] |
Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136, 261-269.
PMID |
[30] | Poca M, Coomans O, Urcelay C, Zeballos SR, Bodé S, Boeckx P (2019). Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas. Plant and Soil, 441, 485-497. |
[31] |
Romero-Saltos H, Sternberg L, Moreira MZ, Nepstad DC (2005). Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake. American Journal of Botany, 92, 443-455.
DOI PMID |
[32] | Sprenger M, Leistert H, Gimbel K, Weiler M (2016). Illuminating hydrological processes at the soil-vegetation- atmosphere interface with water stable isotopes. Reviews of Geophysics, 54, 674-704. |
[33] | Sun X, Wilcox BP, Zou C, Stebler E, West JB, Wyatt B (2021). Isotopic partitioning of evapotranspiration in a mesic grassland during two wetting-drying episodes. Agricultural and Forest Meteorology, 301, 108321. DOI: 10.1016/j.agrformet.2021.108321. |
[34] | Sun XX, Chen JS, Shi GX, Tan HB, Liu XY, Su ZG (2012). Hydrogen and oxygen isotopic variations of different water bodies in evaporation and rainfall infiltration processes. Transactions of the Chinese Society of Agricultural Engineering, 28(4), 100-105. |
[孙晓旭, 陈建生, 史公勋, 谭红兵, 刘晓艳, 苏治国 (2012). 蒸发与降水入渗过程中不同水体氢氧同位素变化规律. 农业工程学报, 28(4), 100-105.] | |
[35] | Tan HB, Liu ZH, Rao WB, Wei HZ, Zhang YD, Jin B (2017). Stable isotopes of soil water: implications for soil water and shallow groundwater recharge in hill and gully regions of the Loess Plateau, China. Agriculture, Ecosystems & Environment, 243, 1-9. |
[36] | Timbe E, Windhorst D, Crespo P, Frede HG, Feyen J, Breuer L (2014). Understanding uncertainties when inferring mean transit times of water trough tracer-based lumped- parameter models in Andean tropical montane cloud forest catchments. Hydrology and Earth System Sciences, 18, 1503-1523. |
[37] | Wang S, Lei S, Zhang M, Hughes C, Crawford J, Liu Z, Qu DY (2022). Spatial and seasonal isotope variability in precipitation across China: monthly isoscapes based on regionalized fuzzy clustering. Journal of Climate, 35, 3411-3425. |
[38] | Wei YH, Qiao XN, Zhang ZW, Yang YJ, Niu HP (2022). Trade-off and driving mechanisms for farmland ecosystem services based on climatic zones and agricultural regionalization. Transactions of the Chinese Society of Agricultural Engineering, 38(20), 220-228. |
[卫彦宏, 乔旭宁, 张仲伍, 杨永菊, 牛海鹏 (2022). 基于气候带与农业区划的农田生态系统服务权衡及驱动机制. 农业工程学报, 38(20), 220-228.] | |
[39] |
Yakir D, da Silveira Lobo Sternberg L (2000). The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123, 297-311.
DOI PMID |
[40] | Yang Y, Zhang MJ, Wang SJ, Qu DY, Zhang Y, Wang JX (2023). Soil moisture variability affected by sand mulch: an isotope-based assessment of irrigated farmland in Northwest China. Ecohydrology, 16, e2477. DOI: 10.1002/eco.2477. |
[41] | Yin F, Mao RZ, Fu BJ, Liu GH (2006). Farmland ecosystem service and its formation mechanism. Chinese Journal of Applied Ecology, 17, 929-934. |
[尹飞, 毛任钊, 傅伯杰, 刘国华 (2006). 农田生态系统服务功能及其形成机制. 应用生态学报, 17, 929-934.] | |
[42] | Yuan GF, Zhang N, Sun XM, Wen XF, Zhang SC (2010). Partitioning wheat field evapotranspiration using Keeling Plot method and continuous atmospheric vapor δ18O data. Chinese Journal of Plant Ecology, 34, 170-178. |
[袁国富, 张娜, 孙晓敏, 温学发, 张世春 (2010). 利用原位连续测定水汽δ18O值和Keeling Plot方法区分麦田蒸散组分. 植物生态学报, 34, 170-178.]
DOI |
|
[43] | Zhai L, Wang X, Wang P, Miralles-Wilhelm F, da Silveira Lobo Sternberg L (2019). Vegetation and location of water inflow affect evaporation in a subtropical wetland as indicated by the deuterium excess method. Ecohydrology, 12, e2082. DOI: 10.1002/eco.2082. |
[44] | Zhang XP, Yao TD, Tian LD (2003). Study on the fractionation mechanism of stable isotope in evaporating water body. Journal of Glaciology and Geocryology, 25(1), 65-71. |
[章新平, 姚檀栋, 田立德 (2003). 水体蒸发过程中稳定同位素分馏的模拟. 冰川冻土, 25(1), 65-71.] | |
[45] | Zhang Y, Zhang MJ, Wang JX, Lu R, Liu LL (2024). A review of water movement process in SPAC in the semi-arid and arid regions based on stable isotopes. Acta Ecologica Sinica, 44, 1360-1373. |
[张宇, 张明军, 王家鑫, 鲁睿, 刘灵灵 (2024). 基于稳定同位素的干旱半干旱区SPAC水分运移过程研究进展. 生态学报, 44, 1360-1373.] | |
[46] | Zhen ZL, Li CY, Li WB, Hu QT, Liu XX, Liu ZJ, Yu RX (2014). Characteristics of environmental isotopes of surface water and groundwater and their recharge relationships in Lake Dali Basin. Journal of Lake Sciences, 26, 916-922. |
[甄志磊, 李畅游, 李文宝, 胡其图, 刘晓旭, 刘志娇, 于瑞雪 (2014). 内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系. 湖泊科学, 26, 916-922.] | |
[47] | Zheng SH, Hou FG, Ni BL (1983). Study on stable isotopes of hydrogen and oxygen in precipitation in China. Chinese Science Bulletin, 28, 801-806. |
[郑淑蕙, 侯发高, 倪葆龄 (1983). 我国大气降水的氢氧稳定同位素研究. 科学通报, 28, 801-806.] |
[1] | 周红娟, 刘子赫, 刘柯言, 张初蕊, 胡旭, 韩璐, 陈立欣. 不同降雨条件下北京土石山区混生乔灌植物的水分吸收和生态位特征[J]. 植物生态学报, 2024, 48(9): 1089-1103. |
[2] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[3] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[4] | 吕婷, 赵西宁, 高晓东, 潘燕辉. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017, 41(2): 175-185. |
[5] | 何春霞, 陈平, 孟平, 张劲松, 杨洪国. 华北低丘山区果药复合系统种间水分利用策略[J]. 植物生态学报, 2016, 40(2): 151-164. |
[6] | 杨斌, 谢甫绨, 温学发, 孙晓敏, 王建林. 华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J]. 植物生态学报, 2012, 36(6): 539-549. |
[7] | 温学发, 张世春, 孙晓敏, 于贵瑞. 叶片水H218O富集的研究进展[J]. 植物生态学报, 2008, 32(4): 961-966. |
[8] | 徐庆, 刘世荣, 安树青, 蒋有绪, 王中生, 刘京涛. 川西亚高山暗针叶林降水分配过程中氧稳定同位素特征[J]. 植物生态学报, 2006, 30(1): 83-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19