植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 552-561.DOI: 10.17521/cjpe.2024.0307 cstr: 32100.14.cjpe.2024.0307
李梦琦1, 苗灵凤1,2, 李大东1,3, 龙奕帆1, 叶冰冰1, 杨帆1,*()
收稿日期:
2024-09-12
接受日期:
2025-01-07
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
* (fanyangmlf6303@163.com)基金资助:
LI Meng-Qi1, MIAO Ling-Feng1,2, LI Da-Dong1,3, LONG Yi-Fan1, YE Bing-Bing1, YANG Fan1,*()
Received:
2024-09-12
Accepted:
2025-01-07
Online:
2025-04-20
Published:
2025-04-18
Contact:
* (fanyangmlf6303@163.com)
Supported by:
摘要: 不同程度潮汐水淹会对红树林沉积物养分及其化学计量特征产生显著影响, 而植物细根功能性状则是应对养分变化的重要策略。然而, 人们对不同潮位下红树林沉积物养分变化与细根功能性状的相关研究缺乏深入认识, 且目前从细根功能性状尺度探究外来与本土红树植物的养分获取策略的研究相对较少。为进一步确定红树林植物细根功能性状对根际沉积物养分变化的响应, 探究其资源利用策略, 该研究以本土物种海莲(Bruguiera sexangula)和外来物种无瓣海桑(Sonneratia apetala)为对象, 基于不同潮位进行细根与根际沉积物取样, 分析不同潮位下两种红树植物细根功能性状与根际沉积物部分养分含量及酶活性的关系。结果表明: 1)外来物种无瓣海桑比本土物种海莲养分获取需求更高, 代谢能力更强, 且两树种均受到一定程度的氮(N)限制。2)在一定范围内, 沉积物N、磷(P)转化速率随着水淹程度升高而显著加快, 沉积物铵态氮(NH4+-N)、硝态氮(NO3--N)、有效磷(AP)含量随着水淹时间增加而增加。3)两物种细根的比根长与沉积物中NO3--N含量显著正相关, 说明沉积物养分有效性的增加对红树植物根系的伸长具有重要促进作用。
李梦琦, 苗灵凤, 李大东, 龙奕帆, 叶冰冰, 杨帆. 海南东寨港红树林植物细根功能性状对不同潮位沉积物养分变化的响应. 植物生态学报, 2025, 49(4): 552-561. DOI: 10.17521/cjpe.2024.0307
LI Meng-Qi, MIAO Ling-Feng, LI Da-Dong, LONG Yi-Fan, YE Bing-Bing, YANG Fan. Response of mangrove fine root functional traits to sediment nutrient changes at different tide levels in Dongzhaigang, Hainan, China. Chinese Journal of Plant Ecology, 2025, 49(4): 552-561. DOI: 10.17521/cjpe.2024.0307
![]() |
表1 东寨港不同潮位下2种红树植物根系功能性状和生态化学计量特征(平均值±标准误)
Table 1 Root functional traits and ecological stoichiometry of two mangrove plants under different tide levels (mean±SE)
![]() |
物种/潮位 Species/intertidal elevation | SWC (%) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg−1) |
---|---|---|---|---|
海莲/低 Bruguiera sexangular/L | 0.56 ± 0.01a | 0.95 ± 0.01c | 1.10 ± 0.19b | 27.68 ± 2.68a |
海莲/中 Bruguiera sexangular/M | 0.48 ± 0.03b | 1.05 ± 0.01b | 0.62 ± 0.03c | 17.74 ± 5.51a |
海莲/高 Bruguiera sexangular/H | 0.37 ± 0.00c | 0.76 ± 0.02e | 0.45 ± 0.11d | 26.71 ± 12.06a |
无瓣海桑/低 Sonneratia apetala/L | 0.56 ± 0.01a | 0.85 ± 0.02d | 1.61 ± 0.13a | 33.21 ± 8.71a |
无瓣海桑/中 Sonneratia apetala/M | 0.48 ± 0.03b | 1.23 ± 0.01a | 0.33 ± 0.05d | 24.82 ± 5.75a |
无瓣海桑/高 Sonneratia apetala/H | 0.37 ± 0.00c | 0.67 ± 0.01f | 0.29 ± 0.10d | 16.65 ± 5.11a |
表2 不同潮位下2种红树植物根际沉积物生态化学计量特征(平均值±标准误)
Table 2 Nutrients and moisture contents in rhizosphere sediments of two mangrove species at different tide levels (mean ± SE)
物种/潮位 Species/intertidal elevation | SWC (%) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg−1) |
---|---|---|---|---|
海莲/低 Bruguiera sexangular/L | 0.56 ± 0.01a | 0.95 ± 0.01c | 1.10 ± 0.19b | 27.68 ± 2.68a |
海莲/中 Bruguiera sexangular/M | 0.48 ± 0.03b | 1.05 ± 0.01b | 0.62 ± 0.03c | 17.74 ± 5.51a |
海莲/高 Bruguiera sexangular/H | 0.37 ± 0.00c | 0.76 ± 0.02e | 0.45 ± 0.11d | 26.71 ± 12.06a |
无瓣海桑/低 Sonneratia apetala/L | 0.56 ± 0.01a | 0.85 ± 0.02d | 1.61 ± 0.13a | 33.21 ± 8.71a |
无瓣海桑/中 Sonneratia apetala/M | 0.48 ± 0.03b | 1.23 ± 0.01a | 0.33 ± 0.05d | 24.82 ± 5.75a |
无瓣海桑/高 Sonneratia apetala/H | 0.37 ± 0.00c | 0.67 ± 0.01f | 0.29 ± 0.10d | 16.65 ± 5.11a |
图1 不同潮位下2种红树植物根系过氧化物酶和沉积物脲酶、酸性磷酸酶活性(平均值±标准误)。A, 根系过氧化物酶活性。B, 沉积物脲酶活性。C, 沉积物酸性磷酸酶活性。HL, 海莲; HS, 无瓣海桑。H, 高潮位; M, 中潮位; L, 低潮位。不同小写字母表示根系过氧化物酶、根际沉积物脲酶和酸性磷酸酶活性在不同潮位和不同物种间差异显著(p < 0.05)。
Fig. 1 Activities of root peroxidase, sediment urease and acid phosphatase of 2 mangrove plants under different tide levels (mean ± SE). A, Root peroxidase activity. B, Urease activity of sediments. C, Sediment acid phosphatase activity. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation. Different lowercase letters indicate that the activities of root peroxidase, rhizosphere sediment urease, and acid phosphatase are significantly different at various tide levels and between the two species (p < 0.05).
图2 东寨港红树林生态系统不同潮位下2种红树植物细根比根长、比根表面积、根组织密度与沉积物铵态氮、硝态氮、有效磷含量的关系。HL, 海莲; HS, 无瓣海桑。H, 高潮位; M, 中潮位; L, 低潮位。
Fig. 2 Relationship of fine root length, specific root surface area, root tissue density of two mangrove species with ammonium and nitrate nitrogen, and available phosphorus contents in sediments under different tide levels in mangrove ecosystem of Dongzhaigang. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation.
图3 东寨港红树林生态系统不同潮位下2种红树植物细根比根长、比根表面积、根组织密度与根系氮含量的关系。HL, 海莲; HS, 无瓣海桑。H, 高潮位; M, 中潮位; L, 低潮位。
Fig. 3 Relationship between specific root length, specific root surface area, root tissue density, and root nitrogen content of two mangrove species under different tide levels in Dongzhaigang mangrove ecosystem. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation.
图4 东寨港红树林生态系统不同潮位下2种红树植物细根碳(C)、氮(N)、磷(P)含量之间的关系。HL, 海莲; HS, 无瓣海桑。H, 高潮位; M, 中潮位; L, 低潮位。
Fig. 4 Relationship between carbon (C), nitrogen (N), and phosphorus (P) contents of fine roots of two mangrove species at different tide levels in the mangrove ecosystem of Dongzhaigang. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation.
[1] | A’Bear AD, Jones TH, Kandeler E, Boddy L (2014). Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology & Biochemistry, 70, 151-158. |
[2] | Bao SD (2000). Soil Agro-Chemistrical Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] |
Blokhina OB, Chirkova TV, Fagerstedt KV (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experimental Botany, 52, 1179-1190.
PMID |
[4] |
Chai M, Li R, Tam NFY, Zan Q (2019). Effects of mangrove plant species on accumulation of heavy metals in sediment in a heavily polluted mangrove swamp in Pearl River Estuary, China. Environmental Geochemistry and Health, 41, 175-189.
DOI PMID |
[5] | Chen L, Hong WJ, Huang YP, Mai ZT, Zeng DH (2019). Growth, leaf element content and stoichiometric characteristics of six common mangrove species. Forestry and Environmental Science, 35(1), 83-88. |
[陈亮, 洪文君, 黄永平, 麦志通, 曾德华 (2019). 6种红树树种生长与叶片元素含量及化学计量特征. 林业与环境科学, 35(1), 83-88.] | |
[6] | Chen R, Wang WW, Cao LR, Chen M, Chen GS, Yao XD, Wang XH (2023). Variation of carbon, nitrogen and phosphorus stoichiometric characteristics of fine roots in masson pine and Chinese fir plantations with soil depth. Acta Ecologica Sinica, 43, 3709-3718. |
[陈蓉, 王韦韦, 曹丽荣, 陈铭, 陈光水, 姚晓东, 王小红 (2023). 马尾松和杉木人工林细根碳氮磷化学计量特征随土层深度的变化. 生态学报, 43, 3709-3718.] | |
[7] | Chen XH, Chen ZZ, Lei JR, Wu TT, Li YL (2022). Distribution characteristics of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Port. Acta Ecologica Sinica, 42, 4572-4581. |
[陈小花, 陈宗铸, 雷金睿, 吴庭天, 李苑菱 (2022). 清澜港红树林湿地典型群落类型沉积物活性有机碳组分分布特征. 生态学报, 42, 4572-4581.] | |
[8] | Chen XP, Guo BQ, Zhong QL, Wang MT, Li M, Yang FC, Cheng DL (2018). Response of fine root carbon, nitrogen, and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains. Acta Ecologica Sinica, 38, 273-281. |
[陈晓萍, 郭炳桥, 钟全林, 王满堂, 李曼, 杨福春, 程栋梁 (2018). 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应. 生态学报, 38, 273-281.] | |
[9] | Dai J (2018). Adaptational Mechanism of Mangrove Seedlings of Kandelia obovata to Tidal Waterlogging. Master degree dissertation, East China Normal University, Shanghai. |
[代捷 (2018). 秋茄幼苗对潮汐水淹的适应机制. 硕士学位论文, 华东师范大学, 上海.] | |
[10] |
Fazlioglu F, Chen L (2020). Introduced non-native mangroves express better growth performance than co-occurring native mangroves. Scientific Reports, 10, 3854. DOI: 10.1038/s41598-020-60454-z.
PMID |
[11] | Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo DL, et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology, 105, 1182-1196. |
[12] | Gao JF (2006). Experimental Supervision of Plant Physiology. Higher Education Press, Beijing. |
[高俊凤 (2006). 植物生理学实验指导. 高等教育出版社, 北京.] | |
[13] |
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Oravec M, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, Parella T, Peñuelas J (2015). Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytologist, 207, 591-603.
DOI PMID |
[14] |
Grassein F, Lemauviel-Lavenant S, Lavorel S, Bahn M, Bardgett RD, Desclos-Theveniau M, Laîné P (2015). Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting european grass species. Annals of Botany, 115, 107-115.
DOI PMID |
[15] | Hartzell JL, Jordan TE, Cornwell JC (2017). Phosphorus sequestration in sediments along the salinity gradients of chesapeake bay subestuaries. Estuaries and Coasts, 40, 607-1625. |
[16] | Huang AM, Fang Y, Sun J, Li JL, Hu DD, Zhong QL, Cheng DL (2023). Fine root traits of Phyllostachys edulis at different altitudes in Wuyi Mountain. Acta Ecologica Sinica, 43, 398-407. |
[黄爱梅, 方毅, 孙俊, 李锦隆, 胡丹丹, 钟全林, 程栋梁 (2023). 武夷山不同海拔毛竹细根功能性状. 生态学报, 43, 398-407.] | |
[17] | Koerselman, Willem, Meuleman, Arthur FM, (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[18] | Long YF, Tian MJ, Ye BB, Li MQ, Li DD, Yang F (2024). Comparative study on the community characteristics and population dynamics of Bruguiera sexangula at different tidal elevations in Dongzhaigang Nature Reserve. Plant Science Journal, 43, 72-81. |
[龙奕帆, 田梦洁, 叶冰冰, 李梦琦, 李大东, 杨帆 (2024). 东寨港自然保护区不同潮位下海莲群落特征及种群动态的比较研究. 植物科学学报, 43, 72-81.] | |
[19] |
Lovelock CE, Feller IC, Adame MF, Reef R, Penrose HM, Wei Ll, Ball MC (2011). Intense storms and the delivery of materials that relieve nutrient limitations in mangroves of an arid zone estuary. Functional Plant Biology, 38, 514-522.
DOI PMID |
[20] | Magara F, Boury-Jamot B (2024). About statistical significance, and the lack thereof. Laboratory Animals, 58, 448-452. |
[21] |
Mueller P, Granse D, Nolte S, Weingartner M, Hoth S, Jensen K (2020). Unrecognized controls on microbial functioning in blue carbon ecosystems: the role of mineral enzyme stabilization and allochthonous substrate supply. Ecology and Evolution, 10, 998-1011.
DOI PMID |
[22] |
Ortega-Morales BO, Chan-Bacab MJ, de la Rosa SDC, Camacho-Chab JC (2010). Valuable processes and products from marine intertidal microbial communities. Current Opinion in Biotechnology, 21, 346-352.
DOI PMID |
[23] | Pan F, Liang Y, Wang K, Zhang W (2018). Responses of fine root functional traits to soil nutrient limitations in a karst ecosystem of southwest China. Forests, 9, 743. DOI: 10.3390/f9120743. |
[24] | Qi X, Chen L, Zhu J, Li Z, Lei H, Shen Q, Wu H, Ouyang S, Zeng Y, Hu Y, Xiang W (2022). Increase of soil phosphorus bioavailability with ectomycorrhizal tree dominance in subtropical secondary forests. Forest Ecology and Management, 521, 120435. DOI: 10.1016/j.foreco.2022.120435. |
[25] |
Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 997-1005.
DOI PMID |
[26] | Song X, Wang Y, Lv X (2016). Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from north China grasslands. Ecology & Evolution, 6, 1871-1882. |
[27] | Sun Y, Gu J, Zhuang H, Wang Z (2010). Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China. Ecological Research, 25, 95-302. |
[28] | Tian CM, Liu JJ, Liang YM, Liu YH (1999). Rhizosphere microorganisms and soil bio-chemical properties at Huoditang forest region of the Qinling Mountains. Bulletin of Soil and Water Conservation, 19(2), 19-22. |
[田呈明, 刘建军, 梁英梅, 刘永华 (1999). 秦岭火地塘林区森林根际微生物及其土壤生化特性研究. 水土保持通报, 19(2), 19-22.] | |
[29] |
Trumbore SE, Gaudinski JB (2003). The secret lives of roots. Science, 302, 1344-1345.
PMID |
[30] |
Tully K, Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES, Bendor T, Mitchell M, Kominoski J, Jordan TE, Neubauer SC (2019). The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience, 69, 368-378.
DOI |
[31] | Valverde Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[32] |
Voesenek L, Colmer TD, Pierik R, Millenaar FF, Peeters A (2006). How plants cope with complete submergence. New Phytologist, 170, 213-226.
PMID |
[33] |
Wahl S, Ryser P (2000). Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148, 459-471.
DOI PMID |
[34] |
Wurzburger N, Wright SJ (2015). Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology, 96, 2137-2146.
PMID |
[35] | Ye Y, Tam NF, Wong YS, Lu CY (2003). Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany, 49, 209-221. |
[36] | Yu M, Su W, Huang L, Parikh SJ, Tang C, Dahlgren RA, Xu J (2021). Bacterial community structure and putative nitrogen-cycling functional traits along a charosphere gradient under waterlogged conditions. Soil Biology & Biochemistry, 162, 08420. DOI: 10.1016/j.soilbio.2021.108420. |
[37] | Zhou Y, Guan F, Li Z, Zheng Y, Zhou X, Zhang X (2022). Effects of tree species on moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) fine root morphology, biomass, and soil properties in bamboo-broadleaf mixed forests. Forests, 13, 1834. DOI: 10.3390/f13111834. |
[38] | Zhou YH, Zhang ZH, Li J, Liu X, Hu G (2020). Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in leaves and soils of mangroves in Beilun estuary, Guangxi. Earth and Environment, 48, 58-65. |
[周元慧, 张忠华, 黎洁, 刘熊, 胡刚 (2020). 广西北仑河口红树植物叶片和土壤的碳氮磷生态化学计量特征. 地球与环境, 48, 58-65.] | |
[39] | Zhu D, Hui D, Huang Z, Qiao X, Tong S, Wang M, Yang Q, Yu S (2021). Comparative impact of light and neighbor effect on the growth of introduced species Sonneratia apetala and native mangrove species in China: implications for restoration. Restoration Ecology, 30, e13522. DOI: 10.1111/rec.13522. |
[40] | Zhu ZL, Xing GX (2002). Nitrogen Cycle—A Natural Process that Sustains Life on Earth. Tsinghua University Press, Beijing. |
[朱兆良, 邢光熹 (2002). 氮循环: 维系地球生命生生不息的一个自然过程. 清华大学出版社, 北京.] | |
[41] | Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, Mataix-Beneyto J (2006). Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under mediterranean conditions. Soil Biology & Biochemistry, 38, 2125-2134. |
[1] | 王梦雪 胡明艳 储诚进 陈阳 罗文启 马子龙. 亚热带森林不同菌根真菌树种叶片和细根的C、N、P化学计量特征[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[2] | 张永军 李敬东 安琦 洪翎桂 任正炜 张蕊 周小龙. 氮添加和增温对天山高寒草地群落性状的影响[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[3] | 张静 陈洁 李艳朋 盘李军 许涵 李意德 何海生. 南亚热带针阔混交人工林植物生物量比较及其影响因子分析[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[4] | 戴丽君, 向玲艺, 蹇陈, 王晓锋. 三峡回水扰动增强了入库小流域河岸带典型草本植物功能性状的局域分化[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 1-. |
[5] | 杜英杰, 范爱连, 王雪, 闫晓俊, 陈廷廷, 贾林巧, 姜琦, 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异[J]. 植物生态学报, 2025, 49(4): 585-595. |
[6] | 李姝雯, 汤璐瑶, 张博纳, 叶琳峰, 童金莲, 谢江波, 李彦, 王忠媛. 降水梯度带榆树枝叶协作关系的区域分异规律[J]. 植物生态学报, 2025, 49(2): 282-294. |
[7] | 郑琳敏, 熊小玲, 姜永孟, 王曼, 张锦秀, 曾志伟, 吕茂奎, 谢锦升. 武夷山不同海拔杉木凋落叶和细根分解规律以及驱动因素的差异[J]. 植物生态学报, 2025, 49(2): 244-255. |
[8] | 蔡慧颖, 梁亚涛, 娄虎, 杨光, 孙龙. 白桦细根功能性状和根际细菌群落随火后时间的变化[J]. 植物生态学报, 2024, 48(7): 828-843. |
[9] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[10] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[11] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[12] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[13] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[14] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[15] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19