植物生态学报 ›› 2025, Vol. 49 ›› Issue (4): 562-572.DOI: 10.17521/cjpe.2024.0283 cstr: 32100.14.cjpe.2024.0283
收稿日期:
2024-08-21
接受日期:
2024-12-10
出版日期:
2025-04-20
发布日期:
2025-04-18
通讯作者:
* (490206204@qq.com)
WANG Bei-Bei, WU Su, WANG Miao-Miao*(), HU Jin-Tao
Received:
2024-08-21
Accepted:
2024-12-10
Online:
2025-04-20
Published:
2025-04-18
Contact:
* (490206204@qq.com)
摘要:
在全球碳循环和气候变化研究中, 准确地监测陆地生态系统的总初级生产力(GPP)至关重要。日光诱导叶绿素荧光(SIF)与GPP之间的近线性关系提供了一个从地面样点尺度到全球尺度估算植被碳吸收的新途径。然而, 在不同时间尺度下, SIF的辐射、结构和生理信息对GPP估算的贡献比例仍不明晰。该研究使用位于河南商丘的野外定点的冠层光谱和涡度协方差通量观测数据, 对小麦(Triticum aestivum)和玉米(Zea mays)这两种典型的C3和C4作物进行研究。通过对比基于近红外植被反射率指数(NIRv)和荧光校正植被指数(FCVI)拆分SIF的辐射、结构和生理组分的方法, 改进留一法量化了这些组分对GPP估算的贡献, 并分析了作物类型和时间分辨率对SIF与GPP关系的影响。研究表明, 作物类型差异及时间分辨率的降低显著影响SIF与GPP之间的关系; 在较短的时间尺度如0.5 h和1 d内, 辐射组分是SIF与GPP关系的主要驱动力。然而, 随着时间尺度延长到一周或更长, 结构和生理组分的影响逐渐显著; 基于NIRv和FCVI的方法在拆分SIF的辐射、结构和生理组分时表现出高度的一致性。通过深入理解并精确量化SIF与GPP的关系, 该研究有助于优化全球植被监测及碳循环研究中的遥感技术和模型。
王贝贝, 吴苏, 王苗苗, 胡锦涛. 日光诱导叶绿素荧光不同组分在作物总初级生产力估算中的贡献比例: 多时间尺度分析. 植物生态学报, 2025, 49(4): 562-572. DOI: 10.17521/cjpe.2024.0283
WANG Bei-Bei, WU Su, WANG Miao-Miao, HU Jin-Tao. Contributions of radiative, structural, and physiological information of solar-induced chlorophyll fluorescence on predicting crop gross primary production across temporal scales. Chinese Journal of Plant Ecology, 2025, 49(4): 562-572. DOI: 10.17521/cjpe.2024.0283
光谱仪 Spectrometer | 波段范围 Band range (nm) | 光谱分辨率 Spectral resolution (nm) | 信噪比 Signal-to-noise ratio | 计算参数 Calculational parameter |
---|---|---|---|---|
QEpro | 730-785 | 0.17 | 1 000 | Solar-induced chlorophyll fluorescence |
HR2000+ | 350-1 100 | 1.10 | 250 | Reflectance vegetation index |
表1 冠层光谱观测系统FluoSpec 2光谱仪参数
Table 1 Configuration parameters of the spectrometers used in FluoSpec 2 system
光谱仪 Spectrometer | 波段范围 Band range (nm) | 光谱分辨率 Spectral resolution (nm) | 信噪比 Signal-to-noise ratio | 计算参数 Calculational parameter |
---|---|---|---|---|
QEpro | 730-785 | 0.17 | 1 000 | Solar-induced chlorophyll fluorescence |
HR2000+ | 350-1 100 | 1.10 | 250 | Reflectance vegetation index |
图1 2019年商丘小麦(蓝色圆圈)和玉米(红色圆圈)的总初级生产力(GPP) (A)、日光诱导叶绿素荧光(SIF) (B)、光合有效辐射(PAR) (C)、植被近红外反射率指数(NIRv) (D)、荧光校正植被指数(FCVI) (E)、基于NIRv方法的荧光量子效率(ΦF_NIRv) (F)和基于FCVI方法的荧光量子效率(ΦF_FCVI)的季节变化(G)。
Fig. 1 Seasonal variations of gross primary productivity (GPP) (A), solar-induced chlorophyll fluorescence (SIF) (B), photosynthetically active radiation (PAR) (C), near-infrared reflectance of vegetation (NIRv) (D), fluorescence corrected vegetation index (FCVI) (E), fluorescence quantum efficiency based on NIRv method (ΦF_FCVI) (F), and fluorescence quantum efficiency based on FCVI method (ΦF_FCVI) for Triticum aestivum (blue circle) and Zea mays (red circle) of Shangqiu in 2019 (G).
图2 不同作物类型和时间分辨率下的日光诱导叶绿素荧光(SIF)与总初级生产力(GPP)之间的关系及线性关系的决定系数(R2)。A, 0.5 h尺度。B, 1 d尺度。C, 1周尺度。D, 2周尺度。E, 1个月尺度。F, 不同时间分辨率下R2的柱状图。
Fig. 2 Relationships between solar-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) at different temporal resolutions and crops and the determination coefficient (R2) of the linear relationships. A, 0.5 h scale. B, One-day scale. C, One-week scale. D, Two-week scale. E, One-month scale. F, Histogram of R2 at different temporal resolutions.
图3 日光诱导叶绿素荧光(SIF)的生理、结构和辐射组分在SIF与总初级生产力的线性关系的相对贡献百分比。FCVI, 荧光校正植被指数; NIRv, 植被近红外反射率指数。
Fig. 3 Relative contribution percentage of the physiological, structural and radiative components of solar-induced chlorophyll fluorescence (SIF) to the linear relationship between SIF and gross primary productivity. FCVI, fluorescence corrected vegetation index; NIRv, near-infrared reflectance of vegetation.
图4 基于植被近红外反射率指数(NIRv)方法的小麦(A)和玉米(B)的日光诱导叶绿素荧光(SIF)的生理、结构和辐射组分在SIF与总初级生产力的线性关系的相对贡献百分比。
Fig. 4 Relative contribution percentage of the physiological, structural and radiative components of the solar-induced chlorophyll fluorescence (SIF) of Triticum aestivum (A) and Zea mays (B) based on the near-infrared reflectance of vegetation (NIRv) method to the linear relationship between SIF and gross primary productivity.
[1] | Badgley G, Field CB, Berry JA (2017). Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3, e1602244. DOI: 10.1126/sciadv.1602244. |
[2] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI PMID |
[3] | Dechant B, Ryu Y, Badgley G, Zeng YL, Berry JA, Zhang YG, Goulas Y, Li ZH, Zhang Q, Kang M, Li J, Moya I (2020). Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sensing of Environment, 241, 111733. DOI: 10.1016/j.rse.2020.111733. |
[4] | Foken T, Wichura B (1996). Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78, 83-105. |
[5] | Guanter L, Zhang YG, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111, E1327-E1333. |
[6] | Hao D, Zeng Y, Qiu H, Biriukova K, Celesti M, Migliavacca M, Rossini M, Asrar GR, Chen M (2021). Practical approaches for normalizing directional solar-induced fluorescence to a standard viewing geometry. Remote Sensing of Environment, 255, 112171. DOI: 10.1016/j.rse.2020.112171. |
[7] | Huang Y, Zhou C, Du MH, Wu PF, Yuan L, Tang JW (2022). Tidal influence on the relationship between solar-induced chlorophyll fluorescence and canopy photosynthesis in a coastal salt marsh. Remote Sensing of Environment, 2701, 12865. DOI: 10.1016/j.rse.2021.112865. |
[8] |
Kimm H, Guan K, Burroughs CH, Peng B, Ainsworth EA, Bernacchi CJ, Moore CE, Kumagai E, Yang X, Berry JA, Wu G (2021). Quantifying high-temperature stress on soybean canopy photosynthesis: the unique role of sun-induced chlorophyll fluorescence. Global Change Biology, 27, 2403-2415.
DOI PMID |
[9] | Li ZH, Zhang Q, Li J, Yang X, Wu YF, Zhang ZY, Wang SH, Wang HZ, Zhang YG (2020). Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sensing of Environment, 236, 111420. DOI: 10.1016/j.rse.2019.111420. |
[10] | Liu LY, Liu XJ, Wang ZH, Zhang B (2016). Measurement and analysis of bidirectional SIF emissions in wheat canopies. IEEE Transactions on Geoscience and Remote Sensing, 54, 2640-2651. |
[11] | Magney TS, Barnes ML, Yang X (2020). On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophysical Research Letters, 47, e2020GL091098. DOI: 10.1029/2020GL091098. |
[12] |
Magney TS, Bowling DR, Logan BA, Grossmann K, Stutz J, Blanken PD, Burns SP, Cheng R, Garcia MA, Kӧhler P, Lopez S, Parazoo NC, Raczka B, Schimel D, Frankenberg C (2019). Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 116, 11640-11645.
DOI PMID |
[13] | Meroni M, Busetto L, Colombo R, Guanter L, Moreno J, Verhoef W (2010). Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sensing of Environment, 114, 363-374. |
[14] | Miao G, Guan K, Yang X, Bernacchi CJ, Berry JA, DeLucia EH, Wu J, Moore CE, Meacham K, Cai Y, Peng B, Kimm H, Masters MD (2018). Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements. Journal of Geophysical Research: Biogeosciences, 123, 610-623. |
[15] | Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, et al. (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147, 209-232. |
[16] | Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583. |
[17] |
Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA (2014). Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany, 65, 4065-4095.
DOI PMID |
[18] | Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439. |
[19] |
Ryu Y, Berry JA, Baldocchi DD (2019). What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment, 223, 95-114.
DOI |
[20] | Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100. |
[21] | Wu G, Guan K, Ainsworth EA, Martin DG, Kimm H, Yang X (2024a). Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean. Journal of Experimental Botany, 75, 350-363. |
[22] | Wu L, Zhang X, Rossini M, Wu Y, Zhang Z, Zhang Y (2022). Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment. Agricultural and Forest Meteorology, 323, 109063. DOI: 10.1016/j.agrformet.2022.109063. |
[23] | Wu LS, Zhang YG, Zhang ZY, Zhang XK, Wu YF (2022). Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring. Chinese Journal of Plant Ecology, 46, 1167-1199. |
[吴霖升, 张永光, 章钊颖, 张小康, 吴云飞 (2022). 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用. 植物生态学报, 46, 1167-1199.]
DOI |
|
[24] | Wu LS, Zhang YG, Zhang ZY, Zhang XK, Wu YF, Chen JM (2024b). Deriving photosystem-level red chlorophyll fluorescence emission by combining leaf chlorophyll content and canopy far-red solar-induced fluorescence: possibilities and challenges. Remote Sensing of Environment, 304, 114043. DOI: 10.1016/j.rse.2024.114043. |
[25] | Wu YF, Zhang ZY, Wu LS, Zhang YG (2024c). Solar-induced chlorophyll fluorescence tracks canopy photosynthesis under dry conditions in a semi-arid grassland. Agricultural and Forest Meteorology, 356, 110174. DOI: 10.1016/j.agrformet.2024.110174. |
[26] | Yang K, Ryu Y, Dechant B, Berry JA, Hwang Y, Jiang C, Kang M, Kim J, Kimm H, Kornfeld A, Yang X (2018a). Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote Sensing of Environment, 216, 658-673. |
[27] | Yang P, Liu X, Liu Z, van der Tol C, Liu L (2023). The roles of radiative, structural and physiological information of sun-induced chlorophyll fluorescence in predicting gross primary production of a corn crop at various temporal scales. Agricultural and Forest Meteorology, 342, 109720. DOI: 10.1016/j.agrformet.2023.109720. |
[28] | Yang P, van der Tol C (2018b). Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sensing of Environment, 209, 456-467. |
[29] | Yang P, van der Tol C, Campbell PKE, Middleton EM (2020). Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111676. DOI: 10.1016/j.rse.2020.111676. |
[30] | Yang P, van der Tol C, Campbell PKE, Middleton EM (2021). Unraveling the physical and physiological basis for the solar- induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences, 18, 441-465. |
[31] | Yang X, Tang J, Mustard JF, Lee JE, Rossini M, Joiner J, Munger JW, Kornfeld A, Richardson AD (2015). Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 42, 2977-2987. |
[32] | Zeng Y, Badgley G, Dechant B, Ryu Y, Chen M, Berry JA (2019). A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 232, 111209. DOI: 10.1016/j.rse.2019.05.028. |
[33] | Zeng Y, Chen M, Hao D, Damm A, Badgley G, Rascher U, Johnson JE, Dechant B, Siegmann B, Ryu Y, Qiu H, Krieger V, Panigada C, Celesti M, Miglietta F, et al. (2022). Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sensing of Environment, 270, 112856. DOI: 10.1016/j.rse.2021.112856. |
[34] | Zeng Y, Hao D, Badgley G, Damm A, Rascher U, Ryu Y, Johnson J, Krieger V, Wu S, Qiu H, Liu Y, Berry JA, Chen M (2021). Estimating near-infrared reflectance of vegetation from hyperspectral data. Remote Sensing of Environment, 267, 112723. DOI: 10.1016/j.rse.2021.112723. |
[35] | Zhang Y, Guanter L, Berry JA, van der Tol C, Yang X, Tang J, Zhang F (2016). Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sensing of Environment, 187, 145-155. |
[36] | Zhang YG, Zhang Q, Liu LY, Zhang YJ, Wang SQ, Ju WM, Zhou GS, Zhou L, Tang JW, Zhu XD, Wang F, Huang Y, Zhang ZY, Qiu B, Zhang XK, et al. (2021). ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China. Journal of Geophysical Research: Biogeosciences, 126, e2020JG006042. DOI: 10.1029/2020JG006042. |
[37] | Zhang Z, Zhang Y, Porcar-Castell A, Joiner J, Guanter L, Yang X, Migliavacca M, Ju W, Sun Z, Chen S, Martini D, Zhang Q, Li Z, Cleverly J, Wang H, Goulas Y (2020a). Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111722. DOI: 10.1016/j.rse.2020.111722. |
[38] | Zhang Z, Zhang Y, Zhang Q, Chen J, Porcar-Castell A, Guanter L, Wu Y, Zhang X, Wang H, Ding D, Li Z (2020b). Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agricultural and Forest Meteorology, 295, 108147. DOI: 10.1016/j.agrformet.2020.108147. |
[39] | Zhang ZY, Wang SH, Qiu B, Song L, Zhang YG (2019). Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application. Journal of Remote Sensing, 23, 37-52. |
[章钊颖, 王松寒, 邱博, 宋练, 张永光 (2019). 日光诱导叶绿素荧光遥感反演及碳循环应用进展. 遥感学报, 23, 37-52.] | |
[40] | Zhao DY, Hou YQ, Zhang ZY, Wu YF, Zhang XK, Wu LS, Zhu XL, Zhang YG (2022). Temporal resolution of vegetation indices and solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: a study using in-situ measurements. Ecological Indicators, 136, 108673. DOI: 10.1016/j.ecolind.2022.108673. |
[1] | 李琳, 黄佳芳, 丁中浩, 郭萍萍, 蔡芫镔, 李诗华, 李云琴, 罗敏. 淹水高度增加对短叶茳芏潮汐湿地净生态系统CO2交换量的影响[J]. 植物生态学报, 2025, 49(4): 526-539. |
[2] | 刘柯言, 韩璐, 宋午椰, 张初蕊, 胡旭, 许行, 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J]. 植物生态学报, 2025, 49(3): 415-431. |
[3] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[4] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[5] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[6] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[7] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[8] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[9] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[10] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[11] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[12] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[13] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[14] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[15] | 张素彦, 蒋红志, 王扬, 张艳杰, 鲁顺保, 白永飞. 凋落物去除和添加处理对典型草原生态系统碳通量的影响[J]. 植物生态学报, 2018, 42(3): 349-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19