植物生态学报 ›› 2010, Vol. 34 ›› Issue (9): 1058-1065.DOI: 10.3773/j.issn.1005-264x.2010.09.006

• 研究论文 • 上一篇    下一篇

武汉市51种园林植物的气体交换特性

廖建雄1,*(), 史红文2, 鲍大川1, 段庆明2   

  1. 1中国科学院武汉植物园水生植物与流域生态重点实验室, 武汉 430074
    2武汉市园林科学研究所, 武汉 430081
  • 收稿日期:2010-03-24 接受日期:2010-04-29 出版日期:2010-03-24 发布日期:2010-10-08
  • 通讯作者: 廖建雄
  • 作者简介:* E-mail: liaojx@wbgcas.cn

Gas exchange characteristics of 51 garden species in Wuhan City, China

LIAO Jian-Xiong1,*(), SHI Hong-Wen2, BAO Da-Chuan1, DUAN Qing-Ming2   

  1. 1Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
    2Wuhan Landscape Architecture Institute, Wuhan 430081, China
  • Received:2010-03-24 Accepted:2010-04-29 Online:2010-03-24 Published:2010-10-08
  • Contact: LIAO Jian-Xiong

摘要:

对湖北武汉市5个绿地共51种园林植物的气体交换特性的研究表明: 不同绿地间、灌木与乔木间、落叶与常绿植物间的光合能力(Amax)、蒸腾速率(Tr)和光合水分利用效率(PWUE)均有显著差异。绿地间的气体交换特性差异主要表现在物种间, 不同绿地间的小气候或环境差异影响很小。根据51种植物的AmaxTrPWUE, 可将它们划分为3大类群。其中大部分植物属于低光合低水分利用型(38种), 其次为高光合高蒸腾型(10种), 低耗水高水分利用型最少, 仅有花榈木(Ormosia henryi)、银木(Cinnamomum septentrionale)和黄心夜合(Michelia bedinieri) 3种。

关键词: 绿地, 光合能力, 光合水分利用效率, 蒸腾速率, 城市园林植物

Abstract:

Aims Garden plants account for the main part of urban green spaces, and their gas exchange is the key ecological process for regulating urban ecosystem function. Our objectives were to determine whether there are significant differences in gas exchange characteristics among different green spaces and plant guilds in Wuhan City, China and to explore how different environmental conditions and species composition affect these gas exchange characteristics.

Methods Photosynthetic capacity (Amax), transpiration rate (Tr) and photosynthetic water use efficiency (PWUE) were measured for 51 garden species in five green spaces in summer, using a portable photosynthesis system (CIRAS-2, PP systems, Amesbury, USA).

Important findings There were significant differences in Amax, Tr and PWUE among green spaces, shrubs and trees and deciduous and evergreen plants. However, the variation among green spaces was mainly related to differences among species and to a minor extent to differences in microclimate. Based on these gas exchange parameters, the species studied can be divided into three groups: low photosynthesis and low water use efficiency species (38 species), high photosynthesis and high transpiration species (10 species) and low water consumption but high water use species (Ormosia henryi, Cinnamomum septentrionale and Michelia bedinieri).

Key words: green places, photosynthetic capacity, photosynthetic water use efficiency, transpiration, urban garden plants