植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 883-891.DOI: 10.17521/cjpe.2007.0111
收稿日期:
2006-11-14
接受日期:
2007-02-08
出版日期:
2007-11-14
发布日期:
2007-09-30
通讯作者:
樊大勇
作者简介:
* E-mail: fandayong@ibcas.ac.cn基金资助:
QIU Juan1, TAN Dun-Yan1, FAN Da-Yong2,*()
Received:
2006-11-14
Accepted:
2007-02-08
Online:
2007-11-14
Published:
2007-09-30
Contact:
FAN Da-Yong
摘要:
准噶尔荒漠分布的早春短命植物不仅具有十分独特的生物学特点,而且在荒漠植物群落演替、物种多样性维持及土壤改良与防治水土流失等方面具有重要的生态学价值。该文运用Li-6400开放式气体交换光合作用测定系统,对分布于准噶尔荒漠的16种早春短命植物生长盛期的净光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)等特征进行了测定,并对其中7种植物与生长相关的生物量分配特征进行了分析。结果表明:1)16种植物的最大Pn、 最大Tr及WUE分别为8.07~35.96 μmol CO2·m-2·s-1、3.16~29.64 mmol H2O·m-2·s-1、0.54~4.26 μmol CO2·mmol-1H2O;种间最大Pn与最大气孔导度(Stomatal conductance, Gs)之间存在正相关关系,其相关系数为0.77(p<0.05),线性回归斜率为26.36 μmol·mmol-1;从光合速率对胞间CO2浓度及光量子通量密度的响应曲线来看,这类植物的表观CO2补偿点均在4~5 Pa之间(28~30 ℃),表观羧化效率为0.64~1.86 μmol CO2·m-2·s-1·Pa-1,表观量子效率为0.05~0.06。2)从生物量分配来看,所测植物的个体生物量为0.05~0.39 g;单株总叶面积为 3.24~51.40 cm2;单位叶面积干重为0.40~0.77 g·m-2,根在总生物量中所占比例为5.72%~19.43%,单株叶面积比在2.92~9.00 m2·kg-1之间。种间根所占生物量的比与对应的WUE之间的比较分析结果表明,二者之间存在显著的正相关关系,其相关系数r为0.93(p<0.01)。这些结果表明,所观测的早春短命植物具有典型的C3植物特征,相比其它类型的荒漠植物具有较高的单位叶面积Pn、高Tr及低WUE,并且在生长发育过程中表现出很低的根/地上生物量比、较高的叶面积比和单位叶面积干重,说明它们具有相对高的生长速率,这与其生长发育节律相一致,反映了它们与准噶尔荒漠环境相适应的特点。
邱娟, 谭敦炎, 樊大勇. 准噶尔荒漠早春短命植物的光合特性及生物量分配特点. 植物生态学报, 2007, 31(5): 883-891. DOI: 10.17521/cjpe.2007.0111
QIU Juan, TAN Dun-Yan, FAN Da-Yong. CHARACTERISTICS OF PHOTOSYNTHESIS AND BIOMASS ALLOCATION OF SPRING EPHEMERALS IN THE JUNGGAR DESERT. Chinese Journal of Plant Ecology, 2007, 31(5): 883-891. DOI: 10.17521/cjpe.2007.0111
科 Family | 种 Species | ||||
---|---|---|---|---|---|
禾本科 Poaceae | 旱麦草Eremopyrum triticeum | ||||
东方旱麦草E. orientale | |||||
毛穗旱麦草E. distans | |||||
豆科Fabaceae | 弯果胡卢巴Trigonella arcuata | ||||
毛茛科Ranunculaceae | 角果毛茛Ceratocephalus testiculatus | ||||
菊科Asteraceae | 琉苞菊 Hyalea pulchella | ||||
异喙菊 Heteracia szovitsii | |||||
蝎尾菊 Koelpinia linearis | |||||
十字花科Brassicaceae | 条叶庭荠 Alyssum linifolium | ||||
庭荠 A. desertorum | |||||
粗果庭荠 A. dasycarpum | |||||
异果芥 Diptychocarpus strictus | |||||
小果菘蓝 Isatis minima | |||||
西伯利亚离子芥 Chorispora sibirica | |||||
抱茎独行菜 Lepidium perfoliatum | |||||
涩芥 Malcolmia africana |
表1 16种早春短命植物
Table 1 Sixteen species spring ephemerals
科 Family | 种 Species | ||||
---|---|---|---|---|---|
禾本科 Poaceae | 旱麦草Eremopyrum triticeum | ||||
东方旱麦草E. orientale | |||||
毛穗旱麦草E. distans | |||||
豆科Fabaceae | 弯果胡卢巴Trigonella arcuata | ||||
毛茛科Ranunculaceae | 角果毛茛Ceratocephalus testiculatus | ||||
菊科Asteraceae | 琉苞菊 Hyalea pulchella | ||||
异喙菊 Heteracia szovitsii | |||||
蝎尾菊 Koelpinia linearis | |||||
十字花科Brassicaceae | 条叶庭荠 Alyssum linifolium | ||||
庭荠 A. desertorum | |||||
粗果庭荠 A. dasycarpum | |||||
异果芥 Diptychocarpus strictus | |||||
小果菘蓝 Isatis minima | |||||
西伯利亚离子芥 Chorispora sibirica | |||||
抱茎独行菜 Lepidium perfoliatum | |||||
涩芥 Malcolmia africana |
种 Species | 最大净光合速率 Pnmax (μmol CO2·m-2·s-1) | 最大蒸腾速率 Trmax (mmol H2O·m-2·s-1) | 水分利用效率 WUE (μmol CO2·mmol-1H2O) |
---|---|---|---|
旱麦草Eremopyrum triticeum | 18.70±0.60ab | 16.28±0.84a | 1.37±0.28a |
毛穗旱麦草E. distans | 18.42±0.71b | 14.08±0.98a | 1.94±0.68b |
东方旱麦草E. orientale | 21.94±0.03aeh | 15.13±0.92ab | 1.58±0.27ab |
弯果胡卢巴Trigonella arcuata | 35.96±1.28d | 17.51±2.98c | 2.11±0.34b |
琉苞菊Hyalea pulchella | 8.07±0.60e | 15.21±2.23d | 0.54±0.08c |
异喙菊Heteracia szovitsii | 19.30±2.41f | 18.91±3.21e | 1.08±0.25ad |
蝎尾菊Koelpinia linearis | 8.41±1.28ae | 13.88±2.32f | 0.54±0.05c |
角果毛茛Ceratocephalus testiculatus | 20.10±3.89g | 11.26±0.78fg | 1.79±0.34be |
条叶庭荠Alyssum linifolium | 18.18±2.95ch | 4.32±1.93fg | 3.88±0.11d |
庭荠A. desertorum | 18.94±1.44h | 17.97±1.19g | 1.09±0.032ad |
粗果庭荠A. dasycarpum | 30.42±0.30ce | 29.64±2.31g | 0.88±0.31d |
异果芥Diptychocarpus strictus | 11.30±0.76ce | 10.56±1.09b | 1.12±0.21ad |
涩芥Malcolmia africana | 23.58±2.13f | 16.64±0.57cd | 1.42±0.16ae |
西伯利亚离子芥Chorispora sibirica | 12.53±1.26h | 3.16±0.35a | 4.26±1.06f |
抱茎独行菜Lepidium perfoliatum | 10.30±0.45h | 11.88±0.08fgh | 0.87±0.03cd |
小果菘蓝Isatis minima | 21.74±2.28i | 20.63±3.98dfh | 1.15±0.28ad |
表2 16种早春短命植物自然状态下的最大净光合速率、最大蒸腾速率和水分利用效率
Table 2 The in situ maximum net photosynthesis rate (Pnmax), maximum transpiration rate (Trmax) and water use efficiency (WUE) of 16 spring ephemerals measured
种 Species | 最大净光合速率 Pnmax (μmol CO2·m-2·s-1) | 最大蒸腾速率 Trmax (mmol H2O·m-2·s-1) | 水分利用效率 WUE (μmol CO2·mmol-1H2O) |
---|---|---|---|
旱麦草Eremopyrum triticeum | 18.70±0.60ab | 16.28±0.84a | 1.37±0.28a |
毛穗旱麦草E. distans | 18.42±0.71b | 14.08±0.98a | 1.94±0.68b |
东方旱麦草E. orientale | 21.94±0.03aeh | 15.13±0.92ab | 1.58±0.27ab |
弯果胡卢巴Trigonella arcuata | 35.96±1.28d | 17.51±2.98c | 2.11±0.34b |
琉苞菊Hyalea pulchella | 8.07±0.60e | 15.21±2.23d | 0.54±0.08c |
异喙菊Heteracia szovitsii | 19.30±2.41f | 18.91±3.21e | 1.08±0.25ad |
蝎尾菊Koelpinia linearis | 8.41±1.28ae | 13.88±2.32f | 0.54±0.05c |
角果毛茛Ceratocephalus testiculatus | 20.10±3.89g | 11.26±0.78fg | 1.79±0.34be |
条叶庭荠Alyssum linifolium | 18.18±2.95ch | 4.32±1.93fg | 3.88±0.11d |
庭荠A. desertorum | 18.94±1.44h | 17.97±1.19g | 1.09±0.032ad |
粗果庭荠A. dasycarpum | 30.42±0.30ce | 29.64±2.31g | 0.88±0.31d |
异果芥Diptychocarpus strictus | 11.30±0.76ce | 10.56±1.09b | 1.12±0.21ad |
涩芥Malcolmia africana | 23.58±2.13f | 16.64±0.57cd | 1.42±0.16ae |
西伯利亚离子芥Chorispora sibirica | 12.53±1.26h | 3.16±0.35a | 4.26±1.06f |
抱茎独行菜Lepidium perfoliatum | 10.30±0.45h | 11.88±0.08fgh | 0.87±0.03cd |
小果菘蓝Isatis minima | 21.74±2.28i | 20.63±3.98dfh | 1.15±0.28ad |
图1 16种早春短命植物最大净光合速率与最大气孔导度的关系 测定时, 叶温控制在28~30 ℃, 水蒸汽压差控制在2 kPa, 所有测定连续2 d内完成
Fig.1 Relationship between maximum net photosynthesis rate (Pnmax) and maximum stomatal conductance (Gsmax) for 16 spring ephemerals Leaf temperature of 28-30 ℃ and water vapor pressure deficit of 2 kPa. All the measurements were completed within continuous 2 d
图2 10种早春短命植物净光合速率对胞间CO2浓度的响应曲线(Pn-Ci曲线) 测定时, 叶温控制在28~30 ℃, 光量子通量密度控制在1 500 μmol·m -2·s-1。重复3次
Fig.2 Response of net photosynthesis rate (Pn) to internal CO2concentration (Ci) in 10 spring ephemerals Leaf temperature of 28-30 ℃ and photosynthetic photon flux density of 1 500 μmol·m -2·s-1. Three replicates for every CO2 concentration
图3 3种早春短命植物净光合速率对光量子通量密度的响应曲线 测定时, 叶温控制在28~30 ℃, 水蒸汽压差控制在2 kPa, CO2浓度控制在380 μl·L-1, 光量子通量密度设定范围为0~1 500 μmol·m -2·s-1。重复3次
Fig.3 Response of net photosynthesis rate (Pn) to photosynthetic photon flux density (PFD) in three spring ephemerals Leaf temperature of 28-30 ℃, water vapor pressure deficit of 2 kPa, CO2 concentration of 380 μl·L-1, and PFD of 0~1 500 μmol·m -2·s-1. Three replicates for every PFD
种 Species | 总叶面积 Total leaf area (cm2) | 根/总生物量 Root/total biomass ratio | 个体总生物量 Individual biomass (g) | 根/地上生物量 Root/aboveground biomass ratio | 单位叶面积干重 LMA (g·m-2) | 叶面积比 LAR (m2·kg-1) |
---|---|---|---|---|---|---|
异喙菊Heteracia szovitsii | 4.619 8±2.394 4 | 0.072 0±0.026 6 | 0.061 5±0.045 4 | 0.078 4±0.030 9 | 0.398 2±0.065 3 | 9.004 3±3.636 5 |
蝎尾菊Koelpinia linearis | 3.494 4±1.114 0 | 0.057 2±0.044 2 | 0.105 6±0.049 0 | 0.062 9±0.052 6 | 0.455 8±0.051 5 | 3.683 7±1.402 3 |
弯果胡卢巴Trigonella arcuata | 8.256 0±3.903 0 | 0.100 1±0.100 8 | 0.157 7±0.091 1 | 0.126 0±0.153 8 | 0.773 5±0.497 4 | 6.540 5±4.100 1 |
条叶庭荠Alyssum linifolium | 3.970 2±2.180 7 | 0.059 8±0.032 3 | 0.147 5±0.099 4 | 0.064 7±0.037 1 | 0.753 3±0.113 2 | 2.920 5±0.056 61 |
粗果庭荠A. dasycarpum | 7.350 0±2.585 5 | 0.072 3±0.012 5 | 0.154 0±0.061 3 | 0.078 8±0.029 9 | 0.537 2±0.115 3 | 4.894 7±0.961 2 |
小果菘蓝Isatis minima | 51.401 9±29.036 0 | - | 0.391 0±0.168 0 | - | 0.501 9±0.139 6 | - |
旱麦草Eremopyrum triticeum | 3.244 0±2.590 5 | 0.194 3±0.146 9 | 0.052 0±0.041 6 | 0.169 6±0.180 9 | 0.538 0±0.224 2 | 6.302 0±2.233 6 |
表3 7种早春短命植物的总叶面积、根/总生物量、个体总生物量、根/地上生物量比值、单位叶面积干重(LMA)及叶面积比(LAR)
Table 3 The total leaf area, root/total biomass ratio, individual biomass, root/aboveground biomass ratio, leaf mass per unit leaf area (LMA) and leaf area ratio (LAR) of seven selected spring ephemerals
种 Species | 总叶面积 Total leaf area (cm2) | 根/总生物量 Root/total biomass ratio | 个体总生物量 Individual biomass (g) | 根/地上生物量 Root/aboveground biomass ratio | 单位叶面积干重 LMA (g·m-2) | 叶面积比 LAR (m2·kg-1) |
---|---|---|---|---|---|---|
异喙菊Heteracia szovitsii | 4.619 8±2.394 4 | 0.072 0±0.026 6 | 0.061 5±0.045 4 | 0.078 4±0.030 9 | 0.398 2±0.065 3 | 9.004 3±3.636 5 |
蝎尾菊Koelpinia linearis | 3.494 4±1.114 0 | 0.057 2±0.044 2 | 0.105 6±0.049 0 | 0.062 9±0.052 6 | 0.455 8±0.051 5 | 3.683 7±1.402 3 |
弯果胡卢巴Trigonella arcuata | 8.256 0±3.903 0 | 0.100 1±0.100 8 | 0.157 7±0.091 1 | 0.126 0±0.153 8 | 0.773 5±0.497 4 | 6.540 5±4.100 1 |
条叶庭荠Alyssum linifolium | 3.970 2±2.180 7 | 0.059 8±0.032 3 | 0.147 5±0.099 4 | 0.064 7±0.037 1 | 0.753 3±0.113 2 | 2.920 5±0.056 61 |
粗果庭荠A. dasycarpum | 7.350 0±2.585 5 | 0.072 3±0.012 5 | 0.154 0±0.061 3 | 0.078 8±0.029 9 | 0.537 2±0.115 3 | 4.894 7±0.961 2 |
小果菘蓝Isatis minima | 51.401 9±29.036 0 | - | 0.391 0±0.168 0 | - | 0.501 9±0.139 6 | - |
旱麦草Eremopyrum triticeum | 3.244 0±2.590 5 | 0.194 3±0.146 9 | 0.052 0±0.041 6 | 0.169 6±0.180 9 | 0.538 0±0.224 2 | 6.302 0±2.233 6 |
[1] | Bell KL, Hiatt HD, Nikes WE (1979). Seasonal changes in biomass allocation in eight winter annuals of the Mojave Desert. Ecology, 67,781-787. |
[2] | Bray JR (1963). Root production and the estimation of net productivity. Canadian Journal of Botany, 41,65-72. |
[3] | Clark DD, Burk JH (1980). Resource allocation patterns of two California Sonoran Desert ephemerals. Oecologia, 48,86-91. |
[4] | Delucia EH, Schlesinger WH (1991). Resource-use efficiency and drought tolerance in adjacent great basin and Sierran plants. Ecology, 72,51-58. |
[5] |
Ehleringer JR (1983). Eeophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia, 57,107-112.
URL PMID |
[6] | Ehleringer JR, Mooney HA, Berry JA (1979). Photosynthesis and microclimate of Camissonia claviformis, a desert winter annual. Ecology, 60,280-286. |
[7] |
Ehleringer JR, Forseth IN (1980). Solar tracking by plants. Science, 210,1094-1098.
DOI URL PMID |
[8] |
Farquhar GD, Von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149,78-90.
DOI URL PMID |
[9] | Forseth IN, Ehleringer JR (1982). Ecophysiology of two solar tracking desert winter annuals. I. Photosynthetic acclimation to growth temperature. Australian Journal of Plant Physiology, 9,321-332. |
[10] |
Forseth IN, Ehleringer JR (1983a). Ecophysiology of two solar tracking desert winter annuals. III. Gas exchange responses to light, CO2 and VPD in relation to long-term drought. Oecologia, 57,344-351.
DOI URL PMID |
[11] |
Forseth IN, Ehleringer JR (1983b). Ecophysiology of two solar tracking desert winter annuals. IV. Effects of leaf orientation on calculated daily carbon gain and water use efficiency. Oecologia, 58,10-18.
DOI URL PMID |
[12] | Forseth IN, Ehleringer JR, Werk KS, Cook CS (1984). Field water relations of Sonoran Desert annuals. Ecology, 65,1436-1444. |
[13] | Gibson AC (1998). Photosynthetic organs of desert plants. BioScience, 48,911-920. |
[14] | Hu SZ (胡式之), Lu YT (芦云亭), Wu Z (吴正), Zheng D (郑度), Shen GM (沈冠冕) (1962). The scientific investigation of the desert of Junggar Basin in Xinjiang. In: Sand Control Group, Chinese Academy of Sciencesed. (中国科学院治沙队编), Sand Control Research (No.3) (治沙研究(第3号)). Science Press, Beijing. (in Chinese) |
[15] | Huang PY (黄培祐) (2002). Excused Irrigation Vegetation and Its Restoration in Arid Area (干旱区免灌植被及其恢复). Science Press, Beijing. (in Chinese) |
[16] | Huston MA, Smith TM (1987). Plant succession: life history and competition. American Naturalist, 130,168-198. |
[17] | Jiang GM, He WM (1999). Species- and habitat-variability of photosynthesis, transpiration and water use efficiency of different plant species in Maowusu Sand Area. Acta Botanica Sinica (植物学报), 41,1114-1124. |
[18] | Jiang RF (蒋瑞芬), Song ZB (宋振博), Qin M (秦明), Yang EZ (杨恩忠), Wang AM (王爱民), Shi L (石烈) (1992). The preliminary research on the characteristics of the biology and ecology of the early spring plants near to the Urumqi. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 16,354-362. (in Chinese with English abstract) |
[19] | Li XY (李向义) (2000). Preliminary study on the characteristics of roots and relations between roots and environment of ephemerals in Xinjiang. Arid Zone Research (干旱区研究), 17(3),28-34. (in Chinese with English abstract) |
[20] | Ma SJ (马生军), Liu XF (刘晓风), Tan DY (谭敦炎) (2006). The phenology of eight ephemeral plants in Brassicaceae and their adaptation to the desert environment. Journal of Xinjiang Agricultural University (新疆农业大学学报), 29(4),1-4. (in Chinese with English abstract) |
[21] | Mao ZM (毛祖美), Feng HL (冯惠兰) (1991). Study of the ephemerals flora of Xinjiang. In: Xinjiang Institute of Biology, Pedology and Desert Research, Chinese Academy of Sciences 中国科学院新疆生物土壤沙漠研究所 eds. Collected Research Works of Botany in Xinjiang (新疆植物学研究文集). Science Press, Beijing. (in Chinese) |
[22] | Mao ZM (毛祖美), Zhang DM (张佃民) (1994). The conspectus of ephemeral flora in Northern Xinjiang. Arid Zone Research (干旱区研究), 11(3),1-24. (in Chinese with English abstract) |
[23] |
Monson RK, Szarek SK (1981). Life cycle characteristics of Maehaeranthera gracilis (Compositae) in desert habitats. Oecologia, 49,50-55.
DOI URL PMID |
[24] |
Mooney HA, Ehleringer JR, Berry JA (1976). High photosynthetic capacity of a winter annual in Death Valley. Science, 194,322-324.
URL PMID |
[25] | Mulroy TW, Rundel PW (1977). Annual plants: adaptations to desert environments. BioScience, 27,109-114. |
[26] | Niu SL, Jiang GM, Gao LM, Li YG, Liu MZ (2003). Comparison of gas exchange traits of different plant species in Hunshandak Sand Area. Acta Phytoecologica Sinica (植物生态学报), 27,318-324. |
[27] | Poorter H, van der Werf A (1998). Physiological mechanisms and ecological consequences. In: Lambers H, Poorter H, van Vuuren MMIeds. Inherent Variation in Plant Growth. Backhuys Publishers , Leiden. |
[28] | Rossa B, Von Willert DJ (1999). Physiological characteristics of geophytes in semi-arid Namaqualand, South Africa. Plant Ecology, 142,121-132. |
[29] | Santiago LS, Wright SJ (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21,19-27. |
[30] | Sawada S, Yamashita M, Kasai M, Harada A, Hashimoto A (1997). Photosynthesis and micro-environmental factors in a spring ephemeral, Erytbronium japonicum, from native and open habitats. Ecological Research, 12,55-62. |
[31] | Sawada S, Kato T, Sato M, Kasai M (2002). Characteristics of gas exchange and morphology of a spring ephemeral, Erythrum japonicum, in comparison with a sun plant, Glycine max. Glycine max. Ecological Research, 17,97-108. |
[32] | Shreve F, Wiggins IL (1964). Vegetation and Flora of the Sonoran Desert. Stanford University Press, Stanford, California, USA. |
[33] | Wang XQ (王雪芹), Jiang J (蒋进), Lei JQ (雷加强), Zhang WM (张伟明), Qian YB (钱亦兵) (2003). The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geographica Sinica (地理学报), 58,598-605. (in Chinese with English abstract) |
[34] | Wang Y (王烨) (1993). Phenological observation of the early spring ephemeral and ephemeroid plant in Xinjiang. Arid Zone Research (干旱区研究), 10(3),34-39. (in Chinese with English abstract) |
[35] |
Weber JA, Tenhunen JD, Gates DM, Lange OL (1987). Effect of photosynthesis photon flux density on carboxylation efficiency. Plant Physiology, 85,109-114.
URL PMID |
[36] | Wei WS (魏文寿), He Q (何清), Liu MZ (刘明哲), Gao WD (高卫东) (2003). Climate change and the desert environment in Junggar Basin, Xinjiang, China. Journal of Desert Research (中国沙漠), 23(2),101-105. (in Chinese with English abstract) |
[37] | Went FW (1948). Ecology of desert plants.Ⅰ. Observation on germination in the Joshua Tree Nation Monument, California. Ecology, 29,242-253. |
[38] |
Werk KS, Ehleringer JR, Forseth IN, Cook CS (1983). Photosynthetic characteristics of Sonoran Desert winter annuals. Oecologia, 59,101-110.
DOI URL PMID |
[39] | Zhang LP (张利平), Wang XP (王新平), Liu LC (刘立超), Huang ZC (黄子琛), Liu XM (刘新民) (1998). Study on gas exchange characteristics of main constructive plants A. ordosica and C. korshinskii in Shaptou Region. Acta Ecologica Sinica (生态学报), 18,134-137. (in Chinese with English abstract) |
[40] | Zhang LY (张立运) (1985). A preliminary study on the short-lived plant of Mosowan District of Xinjiang. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学丛刊), 9,213-221. (in Chinese with English abstract) |
[41] | Zhang LY (张立运), Chen CD (陈昌笃) (2002). On the general characteristics of plant diversity of Gurbantunggut Sandy Desert. Acta Ecologica Sinica (生态学报), 22,1924-1932. (in Chinese with English abstract) |
[42] | Zhou HY (周海燕), Huang ZC (黄子琛) (1996). Changes in photosynthesis and transpiration of main constructive plants in Mu Us Desert. Acta Phytoecologica Sinica (植物生态学报), 20,120-131. (in Chinese with English abstract) |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[4] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[5] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[6] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[7] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[8] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[9] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[10] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[11] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[12] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[13] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[14] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[15] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19