Please wait a minute...
图/表 详细信息
不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势
周莹莹, 林华
植物生态学报    2023, 47 (5): 733-744.   DOI: 10.17521/cjpe.2022.0289
摘要   (649 HTML56 PDF(pc) (1264KB)(933)  

叶片温度是植物能量交换和生理过程发生的重要微环境参数。叶片热力性状能够在一定程度上调控叶片温度, 避免极端温度对叶片的伤害。但目前针对叶片热力性状的研究还很少。该研究选择云南省从热带到温带具有明显水热梯度的4种典型植被类型: 干热河谷植被、热带雨林、亚热带常绿阔叶林、温带针阔混交林, 对其冠层优势树种的叶片热力性状进行了系统地研究。这些性状包括了可能影响叶片温度的形态、光学、材料特性、解剖和生理的23个性状。研究结果表明: 干热河谷植被的植物主要依靠蒸腾降温, 叶片薄, 叶寿命短, 主要为“快速投资-收益”型植物; 热带雨林植物叶片大, 蒸腾速率不高, 不利于降温, 较厚的叶片、较高的含水量能在一定程度上缓解高温, 采取“慢速投资-收益”策略; 亚热带常绿阔叶林很少发生极端温度, 叶片没有明显的热适应性状, 叶片厚, 叶寿命长, 采取“慢速投资-收益”策略; 温带针阔混交林植被的叶片小而厚, 多成簇状生长, 有一定保温作用。温带针阔混交林的冠层常绿植物光合速率较低, 偏“慢速投资-收益”型; 而落叶植物的光合速率较高, 偏“快速投资-收益”型。该研究系统地研究了热力性状与植物适应策略沿水热梯度的变化, 为深入认识植物对环境适应策略提供了理论基础。


功能群
Functional group
叶片性状
Leaf trait
缩写
Abbreviation
单位
Unit
生态学意义
Ecological significance
叶片形态性状
Leaf morphological traits
单叶叶面积
Individual leaf area
Area cm2 叶片大小影响边界层厚度和对光的截取
Leaf size affects thickness of boundary layer, and interception of light (Milla & Reich, 2007)
单叶叶片周长
Individual leaf perimeter
Peri cm 影响换热面积
Impact on heat exchange area (Milla & Reich, 2007)
叶片光学性状
Leaf optical traits
绿度 Greenness Greenness - 影响叶片的光能捕获效率
Impact on light capture efficiency of leaves (Crawford et al., 2012)
反射率 Reflectivity Ref % 影响叶片的光能捕获效率
Impact on the light capture efficiency of leaves (Crawford et al., 2012)
透射率 Transmissivity Trans % 影响叶片的光能捕获效率
Impact on the light capture efficiency of leaves (Crawford et al., 2012)
吸收率 Absorptivity Abs % 影响叶片的光能捕获效率
Impact on the light capture efficiency of leaves (Crawford et al., 2012)
叶片材料特性
Leaf material property
单位面积叶片含水量
Leaf equivalent water thickness
EWT mg·cm-2 叶片含水量越高, 比热容越大
The higher water content of leaves, the higher specific heat capacity (Leigh et al., 2012)
叶干物质含量
Leaf dry matter content
LDMC g·g-1 LDMC越高, 叶片干物质投资越多, 密度越大
The higher LDMC, the higher leaf dry matter investment and leaf density (Niinemets, 2001)
比叶质量
Leaf mass per area
LMA mg·cm-2 反映叶片的建成成本
Reflecting leaf construction investment (Wright et al., 2004)
叶片解剖性状
Leaf anatomy
traits
叶片厚度
Leaf thickness
Thickness μm 叶片较厚, 比叶质量较高。影响叶片比热容
Thicker leaves with higher LMA. Thickness also influences the specific heat capacity of leaves (Wright et al., 2004; Westoby & Wright, 2006)
上表皮厚度 Thickness
of upper epidermis
Epidermis_up μm 影响水、CO2和热量交换
Affecting water, CO2 and heat exchange (Cai & Song, 2001)
下表皮厚度 Thickness
of lower epidermis
Epidermis_low μm 影响水、CO2和热量交换
Affecting water, CO2 and heat exchange (Cai & Song, 2001)
栅栏组织厚度 Thickness
of palisade tissue
Thickness_palisade μm 栅栏组织厚度影响叶绿体的分布, 影响光合作用和水气交换
Palisade tissue is related to the distribution of chloroplasts, thus affecting photosynthesis, water and gas exchange (Terashima et al., 2011)
海绵组织厚度
Thickness of spongy tissue
Thickness_spongy μm 影响CO2和水交换
Affecting CO2, and water exchange (Terashima et al., 2011)
栅栏组织与叶片厚度比值
Ratio of palisade tissue thickness to leaf thickness
PT % 影响CO2和水交换
Affecting CO2, and water exchange (Terashima et al., 2011)
海绵组织与叶片厚度比值
Ratio of sponge tissue thickness to leaf thickness
ST % 影响CO2和水交换
Affecting CO2, and water exchange (Terashima et al., 2011)
气孔长度
Stomatal length
St_length μm 小气孔可以更快地响应外界环境因子, 而大气孔在潮湿阴蔽的环境中更占优势 Small stomata can respond more quickly to external environmental factors (Drake et al., 2013), while large stomata are more dominant in moist shaded environment (Zhang et al., 2012)
气孔密度
Stomatal density
St_density No. ·mm-2 单位面积的气孔数量越多, CO2和水交换效率越高
More stomata per area enables more CO2 assimilation, and leads to higher water and gas exchange rate (Tanaka & Shiraiwa, 2009)
叶脉密度
Vein density
Vein_density mm·mm-2 较高的叶脉密度会增加叶片的水力导度和光合速率
The higher the vein density, the higher water transport efficiency and photosynthesis (Sack & Scoffoni, 2013)
气孔开口面积指数
Stomatal pore area index
SPI % 反映叶片气孔导度的综合参数, 较高的SPI会提高叶片的碳同化和蒸腾能力 An integrative parameter reflecting leaf stomatal conductance; higher SPI leads to higher carbon assimilation and transpiration capacity (Tian et al., 2016)
光学特性
Photosynthetic characteristics
蒸腾速率
Transpiration rate
Tr mmol·m-2·s-1 蒸腾能起到很好的降温效果, 高的蒸腾速率意味着更高的CO2同化率
Transpiration is beneficial for cooling, and higher transpiration rate leads to higher CO2 assimilation rate (Lin et al., 2017)
单位面积最大净光合速率
Maximum photosynthetic
rate per area
Aarea μmol·m-2·s-1 反映植物对资源的获取和利用
Reflecting acquisition and utilization of resources (Franks & Beerling, 2009)
单位质量最大净光合速率
Maximum photosynthetic
rate per mass
Amass μmol·g-1·s-1 反映植物对资源的获取和利用
Reflecting acquisition and utilization of resources (Franks & Beerling, 2009)
View table in article
表3 叶片性状指标及其生态学意义
正文中引用本图/表的段落
采样时间为2021年5-7月, 每个植株采集当年阳生、成熟、健康叶片若干, 叶片年龄、朝向、大小尽量保持一致, 装在带有湿纸巾的自封袋中, 带回实验室进行测量。所测叶片性状的基本信息见表3。
本文的其它图/表