Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (12): 1262-1272.DOI: 10.17521/cjpe.2017.0219
Special Issue: 稳定同位素生态学
• Research Articles • Previous Articles Next Articles
CHEN Ding-Shuai2,3,*, DONG Zheng-Wu1,*, GAO Lei2, CHEN Xiao-Min3, PENG Xin-Hua2, SI Bing-Cheng4, ZHAO Ying1,4,**()
Online:
2017-12-10
Published:
2018-02-23
Contact:
CHEN Ding-Shuai,DONG Zheng-Wu,ZHAO Ying
CHEN Ding-Shuai, DONG Zheng-Wu, GAO Lei, CHEN Xiao-Min, PENG Xin-Hua, SI Bing-Cheng, ZHAO Ying. Water-use process of two desert shrubs along a precipitation gradient in Horqin Sandy Land[J]. Chin J Plant Ecol, 2017, 41(12): 1262-1272.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0219
Fig. 1 The precipitation and air temperature (2015) (A), and the stable hydrogen and oxygen isotope ratios (δD and δ18O) of precipitation, soil water and plant water (B) in the study area.
Fig. 2 Soli water content under Caragana microphylla (A, B, C) or Artemisia halodendron (D, E, F) as affected by enhanced or reduced rainfall (mean ± SE, n = 4).
Fig. 3 The aboveground and underground biomass of Caragana microphylla (A) and Artemisia halodendron (B) as affected by enhanced or reduced precipitation (mean ± SE, n = 4). Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 4 The distribution of absorptive-conductive root biomass for Caragana microphylla (A, B) and Artemisia halodendron (C, D) as affected by enhanced or reduced precipitation (mean ± SE, n = 4).
Fig. 5 Oxygen stable isotope ratio (δ18O) of soil water as affected by enhanced or reduced precipitation (mean ± SE, n = 4). A, B and C show the δ18O values of Caragana microphylla in different months, D and E show the δ18O values of Artemisia halodendron in different months.
Fig. 6 The xylem water δ18O values of Caragana microphylla (A) and Artemisia halodendron (B) as affected by enhanced or reduced precipitation (mean ± SE, n = 4).
种 Species | 土壤深度 Soil depth (cm) | 5月17日 17 May | 6月23日 23 June | 9月2日 2 September | ||||||
---|---|---|---|---|---|---|---|---|---|---|
增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Decreased rainfall | ||
小叶锦鸡儿 Caragana microphylla | 0-20 | 12.5 (0-29) | 15.8 (0-48) | 32.9 (0-50) | 10.1 (0-30) | 21.8 (0-88) | 8.1 (0-38) | 1.5 (0-8) | 2.6 (0-14) | 2.3 (0-10) |
20-40 | 12.5 (0-29) | 14.6 (0-43) | 20.3 (0-100) | 15.1 (0-52) | 21.2 (0-57) | 8.9 (0-42) | 2.6 (0-14) | 4.5 (0-23) | 3.5 (0-15) | |
40-60 | 19.4 (0-82) | 19.8 (0-82) | 14.4 (0-71) | 17.4 (0-65) | 22.1 (0-84) | 12.6 (0-59) | 4.2 (0-20) | 7.8 (0-38) | 24.1 (0-95) | |
60-80 | 18.5 (0-72) | 17.6 (0-68) | 11.8 (0-58) | 20.1 (0-83) | 12.8 (0-58) | 15.1 (0-72) | 11.7 (0-54) | 17.6 (0-84) | 22.5 (0-98) | |
80-100 | 18.3 (0-71) | 15.8 (0-57) | 10.7 (0-54) | 18.6 (0-69) | 12.8 (0-58) | 26.0 (0-80) | 12.8 (0-59) | 17.8 (0-85) | 28 (0-89) | |
100-120 | 18.8 (0-76) | 16.4 (0-61) | 9.8 (0-49) | 18.7 (0-69) | 9.3 (0-42) | 29.3 (0-61) | 67.2 (41-91) | 49.6 (15-85) | 19.7 (0-92) | |
盐蒿 Artemisia halodendron | 0-20 | - | - | - | 25.7 (0-44) | 17.4 (0-40) | 3.6 (0-11) | 26.9 (7-49) | 31.5 (18-42) | 11.4 (0-20) |
20-40 | - | - | - | 31.3 (0-94) | 31.4 (0-73) | 6.7 (0-20) | 31.4 (0-92) | 27.6 (0-81) | 31.2 (0-74) | |
40-60 | - | - | - | 24.6 (0-74) | 28.3 (0-61) | 7.3 (0-21) | 23.8 (0-70) | 21.5 (0-63) | 28.7 (0-20) | |
60-80 | - | - | - | 18.4 (0-55) | 22.9 (0-55) | 82.4 (79-89) | 17.9 (0-53) | 19.4 (0-58) | 28.7 (0-20) |
Table 1 Contributions of soil water at different depths to two desert shrubs as affected by enhanced or reduced precipitation (%) (mean (minimum - maximum))
种 Species | 土壤深度 Soil depth (cm) | 5月17日 17 May | 6月23日 23 June | 9月2日 2 September | ||||||
---|---|---|---|---|---|---|---|---|---|---|
增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Reduced rainfall | 增雨 Enhanced rainfall | 对照 Natural rainfall | 减雨 Decreased rainfall | ||
小叶锦鸡儿 Caragana microphylla | 0-20 | 12.5 (0-29) | 15.8 (0-48) | 32.9 (0-50) | 10.1 (0-30) | 21.8 (0-88) | 8.1 (0-38) | 1.5 (0-8) | 2.6 (0-14) | 2.3 (0-10) |
20-40 | 12.5 (0-29) | 14.6 (0-43) | 20.3 (0-100) | 15.1 (0-52) | 21.2 (0-57) | 8.9 (0-42) | 2.6 (0-14) | 4.5 (0-23) | 3.5 (0-15) | |
40-60 | 19.4 (0-82) | 19.8 (0-82) | 14.4 (0-71) | 17.4 (0-65) | 22.1 (0-84) | 12.6 (0-59) | 4.2 (0-20) | 7.8 (0-38) | 24.1 (0-95) | |
60-80 | 18.5 (0-72) | 17.6 (0-68) | 11.8 (0-58) | 20.1 (0-83) | 12.8 (0-58) | 15.1 (0-72) | 11.7 (0-54) | 17.6 (0-84) | 22.5 (0-98) | |
80-100 | 18.3 (0-71) | 15.8 (0-57) | 10.7 (0-54) | 18.6 (0-69) | 12.8 (0-58) | 26.0 (0-80) | 12.8 (0-59) | 17.8 (0-85) | 28 (0-89) | |
100-120 | 18.8 (0-76) | 16.4 (0-61) | 9.8 (0-49) | 18.7 (0-69) | 9.3 (0-42) | 29.3 (0-61) | 67.2 (41-91) | 49.6 (15-85) | 19.7 (0-92) | |
盐蒿 Artemisia halodendron | 0-20 | - | - | - | 25.7 (0-44) | 17.4 (0-40) | 3.6 (0-11) | 26.9 (7-49) | 31.5 (18-42) | 11.4 (0-20) |
20-40 | - | - | - | 31.3 (0-94) | 31.4 (0-73) | 6.7 (0-20) | 31.4 (0-92) | 27.6 (0-81) | 31.2 (0-74) | |
40-60 | - | - | - | 24.6 (0-74) | 28.3 (0-61) | 7.3 (0-21) | 23.8 (0-70) | 21.5 (0-63) | 28.7 (0-20) | |
60-80 | - | - | - | 18.4 (0-55) | 22.9 (0-55) | 82.4 (79-89) | 17.9 (0-53) | 19.4 (0-58) | 28.7 (0-20) |
1 |
Barnes CJ, Allison GB (1998). Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen.Journal of Hydrology, 100, 143-176.
DOI URL |
2 |
Cao CY, Jiang DM, Luo YM, Kou ZW (2004). Stability ofCaragana microphylla plantation for wind protection and sand fixation. Acta Ecologica Sinica, 24, 1178-1186.(in Chinese with English abstract) [曹成有, 蒋德明, 骆永明, 寇振武 (2004). 小叶锦鸡儿防风固沙林稳定性研究. 生态学报, 24, 1178-1186.]
DOI URL |
3 | Cheng XB, Wu J, Han SJ, Zhou YM, Wang XX (2011). Effects of decreased rainfall onQuercus mongolica leaf eco- physiological characteristics. Chinese Journal of Ecology, 30, 1908-1914.(in Chinese with English abstract) [程徐冰, 吴军, 韩士杰, 周玉梅, 王秀秀 (2011). 减少降水对长白山蒙古栎叶片生理生态特性的影响. 生态学杂志, 30, 1908-1914.] |
4 |
Chimner RA, Cooper DJ (2004). Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA.Plant and Soil, 260, 225-236.
DOI URL |
5 | Dai Y, Zheng XJ, Tang LS, Li Y (2014). Dynamics of water usage inHaloxylon ammodendron in the southern edge of the Gurbantünggüt Desert. Chinese Journal of Plant Ecology, 38, 1214-1225.(in Chinese with English abstract) [戴岳, 郑新军, 唐立松, 李彦 (2014). 古尔班通古特沙漠南缘梭梭水分利用动态. 植物生态学报, 38, 1214-1225.] |
6 |
Dawson TE, Mambelli S, Plamboeck AH (2002). Stable isotopes in plant ecology.Annual Review of Ecology and Systematics, 33, 507-559.
DOI URL |
7 |
Dodd MB, Lauenroth WK, Welker JM (1998). Differential water resource use by herbaceous and woody plant life forms in a shortgrass steppe community.Oecologia, 117, 504-512.
DOI URL PMID |
8 | Du XL, Wang SJ (2011). Recent advances of stable hydrogen and oxygen isotopic techniques in plant water use strategy.Chinese Agricultural Science Bulletin, 27(22), 5-10.(in Chinese with English abstract) [杜雪莲, 王世杰 (2011). 稳定性氢氧同位素在植物用水策略中的研究进展. 中国农学通报,27(22), 5-10.] |
9 |
Duan DY, Ouyang H, Song MH (2008). Water sources of dominant species in three alpine ecosystems on the Tibetan Plateau, China.Journal of Integrative Plant Biology, 50, 257-264.
DOI URL |
10 |
Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods.Ecological Monographs, 73, 69-86.
DOI URL |
11 |
Ehleringer JR, Dawson TE (1992). Water uptake by plants: Perspectives from stable isotope composition.Plant, Cell & Environment, 15, 1073-1082.
DOI URL |
12 | Flanagan LB, Ehleringer JR (1992). Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland.Plant, Cell & Environment, 15, 831-836. |
13 |
Groisman PY, Karl TR, Easterling DR (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243-283.
DOI URL |
14 |
Knapp AK, Briggs JM, Koelliker JK (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4, 19-28.
DOI URL |
15 | Li KF, Luo YY, Zhang HL, She HY (2012). The relations between root distribution of Artemisia halodendron and soil water in Horqin. Journal of Arid Land Resources and Environment, 26(8), 167-171.(in Chinese with English abstract) [李凯锋, 罗于洋, 张海龙, 折红燕 (2012). 科尔沁差巴嘎蒿根系分布规律与土壤水分关系的研究. 干旱区资源与环境,26(8), 167-171.] |
16 | Li XY (2012). Coupling, respond and adaptation of soil-plant water in arid areas in arid area.Science China: Earth Science, 41, 1721-1730.(in Chinese) [李小雁 (2012). 干旱地区土壤-植被-水文耦合, 响应与适应机制. 中国科学: 地球科学, 41, 1721-1730.] |
17 | Li XY, Zhang SY, Peng HY (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30. |
18 |
Li YF, Yu JJ, Lu K, Wang P, Zhang YC (2017). Water sources ofPopulus euphratica and Tamarix ramosissima in Ejina Delta, the lower reaches of the Heihe River, China. Chinese Journal of Plant Ecology, 41, 519-528.(in Chinese with English abstract) [李亚飞, 于静洁, 陆凯, 王平, 张一驰 (2017). 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41, 519-528.]
DOI URL |
19 |
Lin GH, Phillips SL, Ehleringer JR (1996). Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau.Oecologia, 106, 8-17.
DOI URL |
20 | Liu K, Gao L, Peng XH, Zhang ZB (2015). Spatio-temporal variability of soil moisture in Horqin sandy land.Soils, 47, 765-772.(in Chinese with English abstract) [刘凯, 高磊, 彭新华, 张中彬 (2015). 半干旱区科尔沁沙地土壤水分时空特征研究. 土壤, 47, 765-772.] |
21 | Liu SG, Piao SJ, An MZ, Liu F (2003). Distribution dynamics of Artemisia halodendron absorbent roots in different kinds of sandy land. Acta Phytoecologica Sinica ,27, 684-689.(in Chinese with English abstract) [刘士刚, 朴顺姬, 安卯柱, 刘芳 (2003). 不同类型沙地上差不嘎蒿细根的分布状态. 植物生态学报, 27, 684-689.] |
22 |
Ma CC, Gao YB, Jiang FQ, Wang JL, Guo HY, Wu JB, Su D (2004). The comparison studies of ecological and water regulation characteristics of Caragana microphylla and Caragana stenophylla. Acta Ecologica Sinica, 24, 1442-1451.(in Chinese with English abstract) [马成仓, 高玉葆, 蒋福全, 王金龙, 郭宏宇, 吴建波, 苏丹 (2004). 小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究. 生态学报, 24, 1442-1451.]
DOI URL |
23 | Meehl GA, Arblaster JM, Tebaldi C (2005). Understanding future patterns of increased precipitation intensity in climate model simulations.Geophysical Research Letters, 32, 109-127. |
24 | Niu H, Li HP, Zhao ML, Han X, Dong XH (2008). Relationship between soil water content and vertical distribution of root system under different ground water gradients in Maowusu Sandy Land.Journal of Arid Land Resources and Environment, 22, 157-163.(in Chinese with English abstract) [牛海, 李和平, 赵萌莉, 韩雄, 董晓红 (2008). 毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究. 干旱区资源与环境, 22, 157-163.] |
25 |
Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: Coping with too many sources. Oecologia, 136, 261-269.
DOI URL PMID |
26 |
Phillips DL, Newsome SD, Gregg JW (2005). Combining sources in stable isotope mixing models: Alternative methods.Oecologia, 144, 520-527.
DOI URL PMID |
27 | Saxena RK (1984). Seasonal variations of oxygen-18 in soil moisture and estimation of recharge in esker and moraine formations.Nordic Hydrology, 15, 235-242. |
28 |
Schwinning S, Ehleringer JR (2001). Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems.Journal of Ecology, 89, 464-480.
DOI URL |
29 |
Schwinning S, Starr BI, Ehleringer JR (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil water and plant water uptake.Journal of Arid Environments, 60, 547-566.
DOI URL |
30 | Vitousek PM (1994). Beyond global warming: Ecology and global change.Ecology, 75, 1862-1876. |
31 | Williams DG, Ehleringer JR (2000). Intra and interspecific variation for summer precipitation use in pinyon-juniper woodlands.Ecological Monographs, 70, 517-537. |
32 | Xiong XG, Han XG, Bai YF, Pan QM (2003). Increased distribution of Caragana microphylla in rangelands and its causes and consequences in Xilin River Basin. Acta Prataculturae Sinica, 12(3), 57-62.(in Chinese with English abstract) [熊小刚, 韩兴国, 白永飞, 潘庆民 (2003). 锡林河流域草原小叶锦鸡儿分布增加的趋势、原因和结局. 草业学报, 12(3), 57-62.] |
33 |
Xu Q, Li H, Chen J (2011). Water use patterns of three species in subalpine forest, southwest China: The deuterium isotope approach.Ecohydrology, 4, 236-244.
DOI URL |
34 | Yu SW, Sun ZY, Zhou AG, Zhang X, Duan LJ (2012). Determination of water sources of Gobi plants by δD and δ18O stable isotopes in middle reaches of the Heihe River. Journal of Desert Research, 32, 717-723.(in Chinese with English abstract) [余绍文, 孙自永, 周爱国, 张溪, 段丽军 (2012). 用δD、δ18O同位素确定黑河中游戈壁地区植物水分来源. 中国沙漠, 32, 717-723.] |
35 | Zhang K, Feng Q, Lü YQ, Zhang B, Si JH (2011). Study on spatial heterogeneity of soil water contents in oasis-desert belt of Minqin.Journal of Desert Research, 31, 1149-1155.(in Chinese with English abstract) [张凯, 冯起, 吕永清, 张勃, 司建华 (2011). 民勤绿洲荒漠带土壤水分的空间分异研究. 中国沙漠, 31, 1149-1155.] |
36 |
Zhang LM, Liu XP, Zhao XY, Zhang TH, Yue XF (2014). Response of sandy vegetation characteristics to precipitation change in Horqin Sandy Land.Acta Ecologica Sinica, 34, 2737-2745.(in Chinese with English abstract) [张腊梅, 刘新平, 赵学勇, 张铜会, 岳祥飞 (2014). 科尔沁固定沙地植被特征对降雨变化的响应. 生态学报, 34, 2737-2745.]
DOI URL |
37 | Zhao LJ, Xiao HL, Cheng GD (2008). A preliminary study of water sources of riparian plants in the lower reaches of the Heihe Basin.Acta Geoscientica Sinica, 29, 709-718.(in Chinese with English abstract) [赵良菊, 肖洪浪, 程国栋 (2008). 黑河下游河岸林植物水分来源初步研究. 地球学报, 29, 709-718.] |
38 | Zhao WZ, Liu ZM, Chang XL (2002). Skewness and inequality of height distribution of young Pinus sylvestris var. mongolica stands introduced on sandy soil with lower limited precipitation for tree survival and normal growth. Chinese Journal of Applied Ecology, 13, 6-10.(in Chinese with English abstract) [赵文智, 刘志民, 常学礼 (2002). 降水量下限引种区沙地樟子松幼林种群树高分布偏斜度和不整齐性. 应用生态学报, 13, 6-10.] |
39 |
Zheng XR, Zhao GQ, Li XY, Li L, Wu HW, Zhang SY, Zhang ZH (2015). Application of stable hydrogen isotope in study of water sources for Caragana microphylla bush land in Nei Mongol. Chinese Journal of Plant Ecology, 39, 184-196.(in Chinese with English abstract) [郑肖然, 赵国琴, 李小雁, 李柳, 吴华武, 张思毅, 张志华 (2015). 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用. 植物生态学报,39, 184-196.]
DOI URL |
40 |
Zhou H, Zheng XJ, Tang LS, Li Y (2013). Differences and similarities between water sources of Tamarix ramosissima, Nitraria sibirica and Reaumuria soongorica in the southeastern Junggar Basin. Chinese Journal of Plant Ecology, 37, 665-673.(in Chinese with English abstract) [周海, 郑新军, 唐立松, 李彦 (2013). 准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同. 植物生态学报, 37, 665-673.]
DOI URL |
41 | Zhou YD, Chen SP, Song WM, Lu Q, Lin GH (2011). Water- use strategies of two desert plants along a precipitation gradient in northwestern China.Chinese Journal of Plant Ecology, 35, 789-800.(in Chinese with English abstract) [周雅聃, 陈世苹, 宋维民, 卢琦, 林光辉 (2011). 不同降水条件下两种荒漠植物的水分利用策略. 植物生态学报, 35, 789-800.] |
42 | Zhu YJ, Zhao XB, Liu YS, Li Y, Fan WX (2017). Water use process of Salix psammophila and Salix cheilophila in Gonghe Basin, Qinghai Province. Journal of Desert Research, 37, 281-287.(in Chinese with English abstract) [朱雅娟, 赵雪彬, 刘艳书, 李蕴, 范文秀 (2017). 青海共和盆地沙柳(Salix psammophila)和乌柳(Salix cheilophila)的水分利用过程. 中国沙漠, 37, 281-287.] |
[1] | ZHENG Xiao-Ran,ZHAO Guo-Qin,LI Xiao-Yan,LI Liu,WU Hua-Wu,ZHANG Si-Yi,ZHANG Zhi-Hua. Application of stable hydrogen isotope in study of water sources for Caragana microphylla bushland in Nei Mongol [J]. Chin J Plan Ecolo, 2015, 39(2): 184-196. |
[2] | ZHANG Can-Juan, WU Dong-Xiu, ZHANG Lin, ZHAN Xiao-Yun, ZHOU Shuang-Xi, YANG Yun-Xia. NODULE CHARACTERISTICS OF THREE-YEAR-OLD CARAGANA MICROPHYLLA AND THEIR RESPONSES TO ENVIRONMENTAL CHANGES IN AN INNER MONGOLIA GRASSLAND [J]. Chin J Plant Ecol, 2009, 33(6): 1165-1176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn