Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (10): 1000-1008.DOI: 10.17521/cjpe.2018.0129
• Research Articles • Previous Articles Next Articles
YE Zi-Piao1,DUAN Shi-Hua2,AN Ting1,KANG Hua-Jing3,*()
Received:
2018-05-29
Online:
2018-10-20
Published:
2019-01-30
Contact:
Hua-Jing KANG
Supported by:
YE Zi-Piao, DUAN Shi-Hua, AN Ting, KANG Hua-Jing. Construction of CO2-response model of electron transport rate in C4 crop and its application[J]. Chin J Plant Ecol, 2018, 42(10): 1000-1008.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0129
光合参数 Photosynthetic parameter | 玉米 Maize | 千穗谷 Grain amaranth | ||
---|---|---|---|---|
拟合值 Fitted value | 估算值 Estimated value | 拟合值 Fitted value | 估算值 Estimated value | |
αc | 0.247 ± 0.033b | — | 0.334 ± 0.022a | — |
Ac-max (mmol·m-2·s-1) | 59.12 ± 0.67b | ? 60.39 | 69.97 ± 0.71a | ? 70.49 |
Ca-sat (mmol·mol-1) | 1 335.74 ± 196.52a | ? 1 400 | 976.25 ± 12.06b | ? 1 000 |
Γ (mmol·mol-1) | 4.35 ± 2.08b | ? 4.25b | 12.77 ± 0.53a | ? 13.41 |
Rl (mmol·m-2·s-1) | 1.13 ± 0.64b | ? 0.24 | 2.44 ± 0.15a | ? 0.28 |
R2 | 0.997 | — | 0.991 | — |
Table 1 Estimated values and results fitted by model I for CO2-response curves of photosynthesis (Ac-Ca) in maize and grain amaranth (mean ± SE, n = 5)
光合参数 Photosynthetic parameter | 玉米 Maize | 千穗谷 Grain amaranth | ||
---|---|---|---|---|
拟合值 Fitted value | 估算值 Estimated value | 拟合值 Fitted value | 估算值 Estimated value | |
αc | 0.247 ± 0.033b | — | 0.334 ± 0.022a | — |
Ac-max (mmol·m-2·s-1) | 59.12 ± 0.67b | ? 60.39 | 69.97 ± 0.71a | ? 70.49 |
Ca-sat (mmol·mol-1) | 1 335.74 ± 196.52a | ? 1 400 | 976.25 ± 12.06b | ? 1 000 |
Γ (mmol·mol-1) | 4.35 ± 2.08b | ? 4.25b | 12.77 ± 0.53a | ? 13.41 |
Rl (mmol·m-2·s-1) | 1.13 ± 0.64b | ? 0.24 | 2.44 ± 0.15a | ? 0.28 |
R2 | 0.997 | — | 0.991 | — |
光合参数 Photosynthetic parameter | 玉米 Maize | 千穗谷 Grain amaranth | ||
---|---|---|---|---|
拟合值 Fitted value | 估算值 Estimated value | 拟合值 Fitted value | 估算值 Estimated value | |
αce (mol·m-2·s-1) | 1.215 ± 0.543a | — | 1.208 ± 0.357a | — |
Jmax (mmol·m-2·s-1) | 262.41 ± 1.64b | ? 265.66 | 393.07 ± 37.84a | ? 397.82 |
Ca-sat (mmol·mol-1) | 1 198.58 ± 342.78a | ? 1 200 | 1 229.10 ± 59.14a | ? 1 200 |
J0 (mmol·m-2·s-1) | 22.22 ± 8.35a | ? 27.69 | 27.43 ± 4.97a | ? 29.26 |
R2 | 0.978 | — | 0.992 | — |
Table 2 Estimated values and results fitted by model II for CO2-response curves of photosynthetic electron transport rate (J-Ca) in maize and grain amaranth (mean ± SE, n = 5)
光合参数 Photosynthetic parameter | 玉米 Maize | 千穗谷 Grain amaranth | ||
---|---|---|---|---|
拟合值 Fitted value | 估算值 Estimated value | 拟合值 Fitted value | 估算值 Estimated value | |
αce (mol·m-2·s-1) | 1.215 ± 0.543a | — | 1.208 ± 0.357a | — |
Jmax (mmol·m-2·s-1) | 262.41 ± 1.64b | ? 265.66 | 393.07 ± 37.84a | ? 397.82 |
Ca-sat (mmol·mol-1) | 1 198.58 ± 342.78a | ? 1 200 | 1 229.10 ± 59.14a | ? 1 200 |
J0 (mmol·m-2·s-1) | 22.22 ± 8.35a | ? 27.69 | 27.43 ± 4.97a | ? 29.26 |
R2 | 0.978 | — | 0.992 | — |
光合作用参数 Photosynthetic parameter (mmol·m-2·s-1) | [CO2] = 380 mmol·mol-1 | [CO2] = 0 mmol·mol-1 | ||
---|---|---|---|---|
玉米 Maize | 千穗谷 Grain amaranth | 玉米 Maize | 千穗谷Grain amaranth | |
Ac-max | 59.12 | 69.97 | - | - |
Rn | 2.86 | 1.32 | 3.27 | 3.17 |
Rd | 1.43 | 0.66 | 0.24 | 0.28 |
Re | 1.43 | 0.66 | 3.02 | 2.89 |
Jmax | 262.41 | 393.07 | - | - |
J0 | - | - | 22.22 | 27.43 |
Jc | 242.20 | 282.52 | 0.96 | 1.12 |
Ja | 20.21 | 110.55 | 21.26 | 26.31 |
J°c | 247.92 | 285.16 | 13.08 | 12.68 |
J°a | 14.49 | 107.91 | 9.14 | 14.75 |
Table 3 Comparison of photosynthetic parameters and allocation of electron flow in maize and grain amaranth at 2 000 μmol·m-2·s-1 light intensity
光合作用参数 Photosynthetic parameter (mmol·m-2·s-1) | [CO2] = 380 mmol·mol-1 | [CO2] = 0 mmol·mol-1 | ||
---|---|---|---|---|
玉米 Maize | 千穗谷 Grain amaranth | 玉米 Maize | 千穗谷Grain amaranth | |
Ac-max | 59.12 | 69.97 | - | - |
Rn | 2.86 | 1.32 | 3.27 | 3.17 |
Rd | 1.43 | 0.66 | 0.24 | 0.28 |
Re | 1.43 | 0.66 | 3.02 | 2.89 |
Jmax | 262.41 | 393.07 | - | - |
J0 | - | - | 22.22 | 27.43 |
Jc | 242.20 | 282.52 | 0.96 | 1.12 |
Ja | 20.21 | 110.55 | 21.26 | 26.31 |
J°c | 247.92 | 285.16 | 13.08 | 12.68 |
J°a | 14.49 | 107.91 | 9.14 | 14.75 |
1 | Baker NR ( 2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. |
2 | Berry JA, Farquhar GD ( 1978). The CO2 concentrating function of C4 photosynthesis: A biochemical model. In: Hall D, Coombs J, Goodwin T eds. The Proceedings of the Fourth International Congress on Photosynthesis. Biochemical Society of London, London. 119-131. |
3 | Collatz GJ, Ribas-Carbo M, Berry JA ( 1992). Coupled photosynthesis stomatal model for leaves of C4 plants. Australian Journal of Plant Physiology, 19, 519-538. |
4 |
Eichelmann H, Oja V, Peterson RB, Laisk A ( 2011). The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis. Journal of Experimental Botany, 62, 2205-2215.
DOI URL PMID |
5 | Epron D, Godard D, Cornic G, Genty B ( 1995). Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant, Cell & Environment, 18, 43-51. |
6 |
Farquhar GD, Busch FA ( 2017). Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: A model. New Phytologist, 214, 570-584.
DOI URL PMID |
7 |
Feng RY, Bai YF, Li P, Zhang WF, Wang YY, Yang WD ( 2011). Molecular cloning and expression analysis of C4 phosphoenolpyruvate carboxylase gene from A. hypochondriacus L. Acta Agronomica Sinica, 37, 1801-1808.
DOI URL |
[ 冯瑞云, 白云凤, 李平, 张维锋, 王媛媛, 杨武德 ( 2011). 籽粒苋C4型磷酸烯醇式丙酮酸羧化酶基因的克隆和表达. 作物学报, 37, 1801-1808.]
DOI URL |
|
8 |
Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J ( 2006). Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Journal of Experimental Botany, 57, 2687-2695.
DOI URL PMID |
9 |
Foyer CH, Noctor G ( 2000). Oxygen processing in photosynthesis: Regulation and signaling. New Phytologist, 146, 359-388.
DOI URL |
10 |
Hatch MD ( 1987). C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta, 895, 81-106.
DOI URL |
11 |
He FY, Yan JJ, Bai YF, Feng RY, Zhang WF ( 2017). Prokaryotic expression and enzyme activity determination of C4 key enzyme pyruvate phosphate dikinase gene in Amaranth hypochondriacus. Acta Agriculturae Boreli-Sinica, 32, 61-65.
DOI URL |
[ 贺飞燕, 闫建俊, 白云凤, 冯瑞云, 张维锋 ( 2017). 籽粒苋C4关键酶丙酮酸磷酸双激酶基因的原核表达及酶活性测定. 华北农学报, 32, 61-65.]
DOI URL |
|
12 |
Heber U ( 2002). Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynthesis Research, 73, 223-231.
DOI URL |
13 |
Kang HJ, Li H, Quan W, Ouyang Z ( 2014). Causes of decreasing mitochondrial respiration under light in four crops, Chinese Journal of Plant Ecology, 38, 1110-1116.
DOI URL |
[ 康华靖, 李红, 权伟, 欧阳竹 ( 2014). 四种作物光下暗呼吸速率降低的原因. 植物生态学报, 38, 1110-1116.]
DOI URL |
|
14 |
Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M ( 1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 17, 76-80.
DOI URL PMID |
15 | Li XB, Xu WG, Lei MY, Zhang QC, Wang HW, Li Y, Hua X, Gao C ( 2017). The response of photosynthetic characteristics of maize C4-type pepc, ppdk and nadp-me transgenetic Arabidopsis thaliana to high light stress. Molecular Plant Breeding, 15, 911-919. |
[ 李小博, 许为钢, 雷明月, 张庆琛, 王会伟, 李艳, 华夏, 高崇 ( 2017). 转玉米C4光合途径pepc、ppdk、nadp-me基因拟南芥光合特性对强光胁迫的反应. 分子植物育种, 15, 911-919.] | |
16 |
Liang XY, Liu SR ( 2017). A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves. Chinese Journal of Plant Ecology, 41, 693-706.
DOI URL |
[ 梁星云, 刘世荣 ( 2017). FvCB生物化学光合模型及A-Ci曲线测定. 植物生态学报, 41, 693-706.]
DOI URL |
|
17 |
Lin ZF, Peng CL, Sun ZJ, Lin GZ ( 2000). The influence of light intensity on photosynthetic electron transport partitioning in photorespiration for four subtropical forest species. Science China (Ser C), 30, 72-77.
DOI URL |
[ 林植芳, 彭长连, 孙梓健, 林桂珠 ( 2000). 光强对4种亚热带森林植物光合电子传递向光呼吸分配的影响. 中国科学(C辑), 30, 72-77. ]
DOI URL |
|
18 |
Loreto F, Delfine S, Di-marco G ( 1999). Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Australian Journal of Plant Physiology, 26, 733-736.
DOI URL |
19 | Loreto F, Velikova VB, Marco GDA ( 2001). Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves . Australian Journal of Plant Physiology, 28, 1103-1108. |
20 |
Miyake C ( 2010). Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular mechanisms and physiological functions. Plant and Cell Physiology, 51, 1951-1963.
DOI URL PMID |
21 |
Miyake C, Yonekura K, Kobayashi Y, Yokota A ( 2002). Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant and Cell Physiology, 43, 951-957.
DOI URL PMID |
22 |
Peltier G, Tolleter D, Billon E, Cournac L ( 2010). Auxiliary electron transport pathways in chloroplasts of micro algae. Photosynthesis Research, 106, 19-31.
DOI URL |
23 |
Silva-Pérez V, Furbank RT, Condon AG, Evans J ( 2017). Biochemical model of C3 photosynthesis applied to wheat at different temperatures. Plant, Cell and Environment, 40, 1552-1564.
DOI URL PMID |
24 | Tang XL, Cao YH, Gu LH, Zhou BZ ( 2017 a). Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 37, 6633-6645. |
[ 唐星林, 曹永慧, 顾连宏, 周本智 ( 2017 a). 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 37, 6633-6645.] | |
25 |
Tang XL, Zhou BZ, Zhou Y, Ni X, Cao YH, Gu LH ( 2017 b). Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model. Chinese Journal of Applied Ecology, 28, 1482-1488.
DOI URL |
[ 唐星林, 周本智, 周燕, 倪霞, 曹永慧, 顾连宏 ( 2017 b). 基于FvCB 模型的几种草本和木本植物光合生理生化特性. 应用生态学报, 28, 1482-1488.]
DOI URL |
|
26 |
Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie AR, Hibberd JM ( 2010). Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant Journal, 62, 641-652.
DOI URL PMID |
27 |
Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E ( 1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Tukey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. Plant, Cell and Environment, 18, 631-640.
DOI URL |
28 |
von Caemmerer S ( 2013). Steady-state models of photosynthesis. Plant, Cell and Environment, 36, 1617-1630.
DOI URL PMID |
29 | von Caemmerer S, Furbank RT ( 1999). Modeling of C4 photosynthesis. In: Sage RF, Monson R eds. C4 Plant Biology. Academic Press, San Diego, USA. 169-207. |
30 | Xue X, Xu HM, Wu HY, Shen YB, Xiao JW, Wan YL ( 2017). Research progress of cyclic electron transport in plant photosynthesis. Plant Physiology Journal, 53, 145-158. |
[ 薛娴, 许会敏, 吴鸿洋, 沈应柏, 肖建伟, 万迎朗 ( 2017). 植物光合作用循环电子传递的研究进展. 植物生理学报, 53, 145-158.] | |
31 |
Ye ZP ( 2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740.
DOI URL |
[ 叶子飘 ( 2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.]
DOI URL |
|
32 |
Ye ZP, Wang YJ, Wang LL, Kang HJ ( 2017). Response of photorespiration of Glycine max leaves to light intensity and CO2 concentration. Chinese Journal of Ecology, 36, 2535-2541.
DOI URL |
[ 叶子飘, 王怡娟, 王令俐, 康华靖 ( 2017). 大豆叶片光呼吸对光强和CO2浓度的响应. 生态学杂志, 36, 2535-2541.]
DOI URL |
|
33 |
Yin XY, Sun ZP, Struik PC, Gu JF ( 2011). Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. Journal of Experimental Botany, 62, 3489-3499.
DOI URL PMID |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3735
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1083
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn