Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 611-623.DOI: 10.17521/cjpe.2019.0065
Special Issue: 菌根真菌
• Research Articles • Previous Articles Next Articles
Received:
2019-03-25
Accepted:
2019-06-05
Online:
2019-07-20
Published:
2019-12-12
Contact:
MA Ke-Ming
Supported by:
LIN Li-Tao, MA Ke-Ming. Selection of null models in nestedness pattern detection of highly asymmetric mycorrhizal networks[J]. Chin J Plant Ecol, 2019, 43(7): 611-623.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0065
指标 Index | 反映特征 Underlying feature | 下限保守 Bottom boundary conservative | 上限保守 Top boundary conservative | 零模型保守 Null model conservative | 存在上限 Top limit |
---|---|---|---|---|---|
矩阵温度 matrix temperature (NT) | 矩阵中异常点数量、位置 Relative abundance and position of unexpected absences or presences in a matrix | 是 Yes | 是 Yes | 否 No | 是 Yes |
配对重叠度 nestedness metric based on overlap and decreasing fill (NODF) | 矩阵配对重叠中非子集行列的数量及位置 Percentage and position of columns (rows) overlaps with other columns (rows) | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
嵌套性偏移 Nestedness deviation | 网络与零模型的距离 Distance deviates from null models | 是 Yes | 否 No | 是 Yes | 是 Yes |
标准化指数 Standardized effect size | 网络达到显著水平的难易程度 Significance of a network deviates from null models | 是 Yes | 否 No | 是 Yes | 否 No |
Table 1 Characteristics of various nestedness metrics
指标 Index | 反映特征 Underlying feature | 下限保守 Bottom boundary conservative | 上限保守 Top boundary conservative | 零模型保守 Null model conservative | 存在上限 Top limit |
---|---|---|---|---|---|
矩阵温度 matrix temperature (NT) | 矩阵中异常点数量、位置 Relative abundance and position of unexpected absences or presences in a matrix | 是 Yes | 是 Yes | 否 No | 是 Yes |
配对重叠度 nestedness metric based on overlap and decreasing fill (NODF) | 矩阵配对重叠中非子集行列的数量及位置 Percentage and position of columns (rows) overlaps with other columns (rows) | 是 Yes | 是 Yes | 是 Yes | 是 Yes |
嵌套性偏移 Nestedness deviation | 网络与零模型的距离 Distance deviates from null models | 是 Yes | 否 No | 是 Yes | 是 Yes |
标准化指数 Standardized effect size | 网络达到显著水平的难易程度 Significance of a network deviates from null models | 是 Yes | 否 No | 是 Yes | 否 No |
Fig. 1 Absolute values of nestedness from null models constructed based on fully nested (A, B) and uniformly distributed matrices (C, D) (mean ± SD). Backtrack, fixed row-fixed column; c0, equiprobable row-fixed column; IM, initial matrix; r0, fixed row- equiprobable column; r00, equiprobable row-equiprobable column. ***, significant at 0.001 level.
Fig. 2 Effects of changes in matrix shape on nestedness metrics. Matrix shape, number of columns/number of rows. Backtrack, fixed row-fixed column; c0, equiprobable row-fixed column; r0, fixed row-equiprobable column; r00, equiprobable row-equiprobable column.
Fig. 3 Effects of matrix asymmetric variations on matrix temperature (NT) and NT deviation based on different binary matrix construction methods (mean ± SD). Backtrack, fixed row-fixed column; c0, equiprobable row-fixed column; r0, fixed row-equiprobable column; r00, equiprobable row-equiprobable column. IM, Initial matrix; 5 times, 5 times column merge network; 10 times, 10 times column merge network.
Fig. 4 Effects of matrix asymmetric variations on the standardized effect size (z-score) of matrix temperature (NT). Backtrack, fixed row-fixed column; c0, equiprobable row-fixed column; r0, fixed row-equiprobable column; r00, equiprobable row-equiprobable column. IM, initial matrix; 5 times, 5 times column merge network; 10 times, 10 times column merge network.
Fig. 5 Effects of matrix asymmetric variations on nestedness metric based on overlap and decreasing fill (NODF) and NODF deviation based on different binary matrix construction methods (mean ± SD). Backtrack, fixed row-fixed column; c0, equiprobable row-fixed column; r0, fixed row-equiprobable column; r00, equiprobable row-equiprobable column. IM, Initial matrix; 5 times, 5 times column merge network; 10 times, 10 times column merge network.
Fig. 6 Effects of matrix asymmetric variations o z-scores of on the standardized effect size (z-score) of nestedness metric based on overlap and decreasing fill (NODF). Backtrack, fixed row-fixed column; c0, equiprobable row-fixed column; r0, fixed row-equiprobable column; r00, equiprobable row- equiprobable column. IM, Initial matrix; 5 times, 5 times column merge network; 10 times, 10 times column merge network.
Fig. 7 Effects of the level of matrix randomness on nestedness metrics. Square, symmetric networks with rows and columns 30/30; Asy, asymmetric networks with rows and columns 5/55. Randomness, percentage of disordered cells deviates from fully nested matrix. Data contains a total of 4 850 matrices, with 4:100 (%) randomness degree 97 levels of, 50 repetitions per level.
Fig. 8 Correlation between matrix temperature (NT) and nestedness metric based on overlap and decreasing fill (NODF). Square, symmetric networks with rows and columns 30/30; Asy, asymmetric networks with rows and columns 5/55. Randomness, percentage of disordered cells deviates from fully nested matrix. Data contains a total of 4 850 matrices, with 4:100 (%) randomness degree 97 levels of, 50 repetitions per level.
Fig. 9 Effects of the level of matrix randomness on the standardized effect size of nestedness. Square, symmetric networks with rows and columns 30/30; Asy, asymmetric networks with rows and columns 5/55. Randomness, percentage of disordered cells deviates from fully nested matrix. Data contains a total of 4 850 matrices, with 4:100 (%) random-ness degree 97 levels of, 50 repetitions per level. NT, matrix temperature; NODF, nestedness metric based on overlap and decreasing fill.
[1] |
Almeida-Neto M, Guimarães P, Guimarães Jr PR, Loyola RD, Ulrich W ( 2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227-1239.
DOI URL |
[2] |
Atmar W, Patterson BD ( 1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373-382.
DOI URL PMID |
[3] | Atmar W, Patterson BD ( 1995). The Nestedness Temperature Calculator: A Visual Basic Program, Including 294 Presence-absence Matrices. AICS Research, University Park, NM and Field Museum, Chicago. |
[4] |
Bahram M, Harend H, Tedersoo L ( 2014). Network perspectives of ectomycorrhizal associations. Fungal Ecology, 7, 70-77.
DOI URL |
[5] |
Bahram M, Põlme S, Kõljalg U, Tedersoo L ( 2011). A single European aspen ( Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiology Ecology, 75, 313-320.
DOI URL PMID |
[6] |
Bascompte J ( 2010). Structure and dynamics of ecological networks. Science, 329, 765-766.
DOI URL PMID |
[7] |
Bascompte J, Jordano P, Melian CJ, Olesen JM ( 2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383-9387.
DOI URL PMID |
[8] |
Beiler KJ, Simard SW, Durall DM ( 2015). Topology of tree-mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. Journal of Ecology, 103, 616-628.
DOI URL |
[9] |
Bezerra ELS, Machado IC, Mello MAR ( 2009). Pollination networks of oil-flowers: A tiny world within the smallest of all worlds. Journal of Animal Ecology, 78, 1096-1101.
DOI URL PMID |
[10] |
Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N ( 2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341-346.
DOI URL PMID |
[11] |
Chagnon PL, U’Ren JM, Miadlikowska J, Lutzoni F, Elizabeth Arnold A ( 2016). Interaction type influences ecological network structure more than local abiotic conditions: Evidence from endophytic and endolichenic fungi at a continental scale. Oecologia, 180, 181-191.
DOI URL PMID |
[12] |
Chen SH, Wang YJ ( 2004). Nestedness pattern of insular community assemblages and its applications. Chinese Journal of Ecology, 23, 81-87.
URL PMID |
[ 陈水华, 王玉军 ( 2004). 岛屿群落组成的嵌套格局及其应用. 生态学杂志, 23, 81-87.]
URL PMID |
|
[13] |
Cook RR, Quinn JF ( 1998). An evaluation of randomization models for nested species subsets analysis. Oecologia, 113, 584-592.
DOI URL PMID |
[14] | Dormann CF, Gruber B, Fruend J, Gruber B ( 2018). Bipartite: Analysis of bipartite ecological webs. R package version 2.11. . |
[15] |
Fang Q, Huang SQ ( 2012). Progress in pollination networks: Network structure and dynamics. Biodiversity Science, 20, 300-307.
DOI URL |
[ 方强, 黄双全 ( 2012). 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 20, 300-307.]
DOI URL |
|
[16] |
Gao C, Zhang Y, Shi NN, Zheng Y, Chen L, Wubet T, Bruelheide H, Both S, Buscot F, Ding Q, Erfmeier A, Kühn P, Nadrowski K, Scholten T, Guo LD ( 2015). Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 205, 771-785.
DOI URL PMID |
[17] |
Gotelli NJ ( 2000). Null model analysis of species co-occurrence patterns. Ecology, 81, 2606-2621.
DOI URL PMID |
[18] | Inouye DW, Pyke GH ( 1988). Pollination biology in the Snowy Mountains of Australia: Comparisons with montane Colorado, USA. Australian Journal of Ecology, 13, 191-205. |
[19] |
Kennedy P, Nguyen NH, Cohen H, Peay K ( 2014). Missing checkerboards? An absence of competitive signal in Alnus-associated ectomycorrhizal fungal communities. Peer J, 2, e686. DOI: 10.7717/peerj.686.
DOI URL PMID |
[20] | Li ZC, Xu JY, Wu CY, Zhang Y ( 2011). A review of studies using ecological network analysis. Acta Ecologica Sinica, 31, 5396-5405. |
[ 李中才, 徐俊艳, 吴昌友, 张漪 ( 2011). 生态网络分析方法研究综述. 生态学报, 31, 5396-5405.] | |
[21] | Liu CR, Ma KP, Chen LZ ( 2002). Nestedness: Methods, mechanisms and implications for biological conservation. Acta Phytoecologica Sinica, 26, 68-72. |
[ 刘灿然, 马克平, 陈灵芝 ( 2002). 嵌套性: 研究方法、形成机制及其对生物保护的意义. 植物生态学报, 26, 68-72.] | |
[22] |
Liu KL, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G ( 2012). Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Applied and Environmental Microbiology, 78, 1523-1533.
DOI URL PMID |
[23] | Luo F, Pan Y, Lu CH ( 2013). Structural characteristics of plant-animal mutualistic networks and related affecting factors. Chinese Journal of Ecology, 32, 2179-2185. |
[ 罗芳, 潘扬, 鲁长虎 ( 2013). 动植物互惠网络结构及影响因素. 生态学杂志, 32, 2179-2185.] | |
[24] |
Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M ( 2012). The network structure of plant- arbuscular mycorrhizal fungi. New Phytologist, 194, 536-547.
DOI URL PMID |
[25] | Mosquin T, Martin JEH ( 1967). Observations on the pollination biology of plants on Melville Island, N.W.T, Canada. Canadian Field Naturalist, 81, 201-205. |
[26] |
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H ( 2019). Vegan: Community ecology package. R package version 2.5-4. . Cited: 2019-03-20
DOI URL PMID |
[27] |
Olesen JM, Eskildsen LI, Venkatasamy S ( 2002). Invasion of pollination networks on oceanic islands: Importance of invader complexes and endemic super generalists. Diversity and Distributions, 8, 181-192.
DOI URL |
[28] |
Poisot T, Péquin B, Gravel D ( 2013). High-throughput sequencing: A roadmap toward community ecology. Ecology and Evolution, 3, 1125-1139.
DOI URL PMID |
[29] |
Southworth D, He XH, Swenson W, Bledsoe CS, Horwath WR ( 2005). Application of network theory to potential mycorrhizal networks. Mycorrhiza, 15, 589-595.
DOI URL PMID |
[30] |
Thebault E, Fontaine C ( 2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853-856.
DOI URL PMID |
[31] |
Toju H, Guimarães PR, Olesen JM, Thompson JN ( 2014). Assembly of complex plant-fungus networks. Nature Communications, 5, 5273. DOI: 10.1038/ncomms6273.
DOI URL PMID |
[32] |
Ulrich W, Almeida-Neto M, Gotelli NJ ( 2009). A consumer’s guide to nestedness analysis. Oikos, 118, 3-17.
DOI URL |
[33] |
Ulrich W, Gotelli NJ ( 2007). Null model analysis of species nestedness patterns. Ecology, 88, 1824-1831.
DOI URL PMID |
[34] |
Ulrich W, Gotelli NJ ( 2013). Pattern detection in null model analysis. Oikos, 122, 2-18.
DOI URL PMID |
[35] |
Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP ( 2009). Uniting pattern and process in plant-animal mutualistic networks: A review. Annals of Botany, 103, 1445-1457.
DOI URL PMID |
[36] |
Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W ( 1997). A comparative analysis of nested subset patterns of species composition. Oecologia, 113, 1-20.
DOI URL PMID |
[37] |
Zhang XM, Han XF, Liu LW, Xu AC ( 2016). Influencing factors of the nested distribution of butterfly assemblages in the Zhoushan Archipelago, China. Biodiversity Science, 24, 321-331.
DOI URL |
[ 张雪梅, 韩徐芳, 刘立伟, 徐爱春 ( 2016). 舟山群岛蝶类群落嵌套分布格局及其影响因素. 生物多样性, 24, 321-331.]
DOI URL |
[1] | LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China [J]. Chin J Plant Ecol, 2019, 43(1): 16-26. |
[2] | WANG Xin-Ting, HOU Ya-Li, LIU Fang, CHANG Ying, WANG Wei, LIANG Cun-Zhu, MIAO Bai-Ling. Point pattern analysis of dominant populations in a degraded community in Leymus chinensis + Stipa grandis steppe in Inner Mongolia, China [J]. Chin J Plant Ecol, 2011, 35(12): 1281-1289. |
[3] | LIU Can-Ran, MA Ke-Ping, CHEN Ling-Zhi. NESTEDNESS: METHODS, MECHANISMS AND IMPLICATIONS FOR BIOLOGICAL CONSERVATION [J]. Chin J Plan Ecolo, 2002, 26(增刊): 68-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn