Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1510-1523.DOI: 10.17521/cjpe.2024.0081 cstr: 32100.14.cjpe.2024.0081
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
WANG Si-Qi1, JIN Guang-Ze1,2,*()(
)
Received:
2024-03-22
Accepted:
2024-06-01
Online:
2024-11-20
Published:
2024-06-05
Contact:
*JIN Guang-Ze (taxus@126.com)
Supported by:
WANG Si-Qi, JIN Guang-Ze. Variation and trade-offs in leaf, branch, and root traits at different life history stages of Acer pictum subsp. mono[J]. Chin J Plant Ecol, 2024, 48(11): 1510-1523.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0081
生活史阶段 Life history stage | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) |
---|---|---|
幼苗 Seedling | 3.1 ± 0.63 | 3.98 ± 0.74 |
幼树 Sapling | 17.0 ± 2.72 | 14.88 ± 2.24 |
成年树 Adult tree | 29.9 ± 2.60 | 16.44 ± 1.01 |
Table 1 Information of Acer pictum subsp. mono sample trees of Liangshui National Nature Reserve in Heilongjiang (mean ± SD)
生活史阶段 Life history stage | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) |
---|---|---|
幼苗 Seedling | 3.1 ± 0.63 | 3.98 ± 0.74 |
幼树 Sapling | 17.0 ± 2.72 | 14.88 ± 2.24 |
成年树 Adult tree | 29.9 ± 2.60 | 16.44 ± 1.01 |
功能性状 Functional trait | 生态学意义 Ecological meaning | 功能性状 Functional trait | 生态学意义 Ecological meaning |
---|---|---|---|
叶厚度 Leaf thickness | 反映植物的保水能力 Reflects the water retention ability of plants | 整枝导水率 Pruning water conductivity | 反映植物的水分运输能力 Reflects the water transport capacity of plants |
叶干物质含量 Leaf dry matter content | 反映植物生长发育能力 Reflects the growth and development ability of plants | 根直径 Root diameter | 影响根资源获取和生理功能 Affects root resource acquisition and physiological function |
比叶面积 Specific leaf area | 反映植物对资源的利用效率 Reflects the efficiency of plant resource utilization | 根组织密度 Root tissue density | 反映根系资源的获取能力和防御能力 Reflects the ability to acquire and defend root resources |
叶面积 Leaf area | 反映植物生长发育的能力 Reflects the ability of plant growth and development | 比根长 Specific root length | 反映细根投入与产出关系 Reflects the relationship between fine root input and output |
叶绿素含量指数 Chlorophyll content index | 影响植物的光合作用 Affects plant photosynthesis | 枝含水率 Branch water content | 影响植物代谢效率和抗寒性 Affects plant metabolic efficiency and cold resistance |
净光合速率 Net photosynthetic rate | 反映叶片耐阴性和光合作用效率 Reflects leaf shade tolerance and photosynthetic efficiency | 碳含量 Carbon content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
枝组织密度 Branch tissue density | 反映植物生长速率和水分运输效率 Reflects plant growth rate and water transport efficiency | 氮含量 Nitrogen content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
磷含量 Phosphorus content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
Table 2 Measured traits and ecological significance
功能性状 Functional trait | 生态学意义 Ecological meaning | 功能性状 Functional trait | 生态学意义 Ecological meaning |
---|---|---|---|
叶厚度 Leaf thickness | 反映植物的保水能力 Reflects the water retention ability of plants | 整枝导水率 Pruning water conductivity | 反映植物的水分运输能力 Reflects the water transport capacity of plants |
叶干物质含量 Leaf dry matter content | 反映植物生长发育能力 Reflects the growth and development ability of plants | 根直径 Root diameter | 影响根资源获取和生理功能 Affects root resource acquisition and physiological function |
比叶面积 Specific leaf area | 反映植物对资源的利用效率 Reflects the efficiency of plant resource utilization | 根组织密度 Root tissue density | 反映根系资源的获取能力和防御能力 Reflects the ability to acquire and defend root resources |
叶面积 Leaf area | 反映植物生长发育的能力 Reflects the ability of plant growth and development | 比根长 Specific root length | 反映细根投入与产出关系 Reflects the relationship between fine root input and output |
叶绿素含量指数 Chlorophyll content index | 影响植物的光合作用 Affects plant photosynthesis | 枝含水率 Branch water content | 影响植物代谢效率和抗寒性 Affects plant metabolic efficiency and cold resistance |
净光合速率 Net photosynthetic rate | 反映叶片耐阴性和光合作用效率 Reflects leaf shade tolerance and photosynthetic efficiency | 碳含量 Carbon content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
枝组织密度 Branch tissue density | 反映植物生长速率和水分运输效率 Reflects plant growth rate and water transport efficiency | 氮含量 Nitrogen content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
磷含量 Phosphorus content | 影响资源获取和代谢速率 Affects resource acquisition and metabolic rate |
![]() |
Table 3 Physiological and morphological indexes of leaves, branches, and roots of Acer pictum subsp. mono at different life history stages (mean ± SD)
![]() |
![]() |
Table 4 Contents of carbon (C), nitrogen (N)and phosphorus (P) in leaves, branches, and roots of different life history of Acer pictum subsp. mono (mean ± SD)
![]() |
![]() |
Table 5 The ratios of carbon (C), nitrogen (N) and phosphorus (P) contents in leaves, branches, and roots of different life history of Acer pictum subsp, mono (mean ± SD)
![]() |
Fig. 1 Correlations of leaf functional traits at different life history stages of Acer pictum subsp. mono. Corr, correlation coefficient; I, seedling; II, sapling; III, adult tree. C:N, carbon nitrogen ratio; C:P, carbon phosphorus ratio; LA, leaf area; LC, leaf carbon content; LCHl, leaf chlorophyll content index; LDMC, leaf dry matter content; LN, leaf nitrogen content; LP, leaf phosphorus content LT, leaf thickness; N:P, nitrogen phosphorus ratio; Pn, leaf net photosynthetic rate; SLA, specific leaf area. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Only linear regression fitting lines with significant correlation are shown in the figure.
Fig. 2 Correlations of branch functional traits at different life history stages of Acer pictum subsp. mono. Corr, correlation coefficient; I, seedling; II, sapling; III, adult tree. BC, branch carbon content; BN, branch nitrogen content; BP, branch phosphorus content; BTD, branch tissue density; BWC, branch water content; C:N, carbon nitrogen ratio; C:P, carbon phosphorus ratio; Kh, pruning water conductivity; N:P, nitrogen phosphorus ratio. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Only linear regression fitting lines with significant correlation are shown in the figure.
Fig. 3 Correlations of fine root functional traits at different life history stages of Acer pictum subsp. mono. Corr, correlation coefficient; I, seedling; II, sapling; III, adult tree. C:N, carbon nitrogen ratio; C:P, carbon phosphorus ratio; N:P, nitrogen phosphorus ratio; RC, root carbon content; RD, root diameter; RN, root nitrogen content; RP, root phosphorus content; RTD, root tissue density; SRL, specific root length. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Only linear regression fitting lines with significant correlation are shown in the figure.
Fig. 4 Principal component (PC) analysis of leaf, branch, root functional traits at different life history stages of Acer pictum subsp. mono. A, Leaf, branch and root traits. B, Leaf traits. C, Branch traits. D, Root traits. I, seedling. II, sapling; III, adult tree. BC, branch carbon content; BN, branch nitrogen content; BP, branch phosphorus content; BTD, branch tissue density; BWC, branch water content; Kh, pruning water conductivity; LA, leaf area; LC, leaf carbon content; LCHl, leaf chlorophyll content index; LDMC, leaf dry matter content; LN, leaf nitrogen content; LP, leaf phosphorus content; LT, leaf thickness; Pn, leaf net photosynthetic rate; RC, root carbon content; RD, root diameter; RN, root nitrogen content; RP, root phosphorus content; RTD, root tissue density; SLA, specific leaf area; SRL, specific root length.
[1] | Abbasi UA, You WH, Yan ER (2021). Correlations between leaf economics, hydraulic, and shade-tolerance traits among co-occurring individual trees. Acta Oecologica, 110, 103673. DOI: 10.1016/j.actao.2020.103673. |
[2] |
Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components. Ecology Letters, 10, 135-145.
PMID |
[3] | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. |
[4] |
Almeras T, Costes E, Salles JC (2004). Identification of biomechanical factors involved in stem shape variability between apricot tree varieties. Annals of Botany, 93, 455-468.
PMID |
[5] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI PMID |
[6] | Carrijo JN, Maracahipes L, Scalon MC, Silvério DV, Abadia AC, Fagundes MV, Veríssimo AA, Gonçalves LA, Carrijo D, Martins J, Lenza E (2021). Functional traits as indicators of ecological strategies of savanna woody species under contrasting substrate conditions. Flora, 284, 151925. DOI: 10.1016/j.flora.2021.151925. |
[7] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[8] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[9] | Chou YL, Dong SL, Nie SQ (1986). Ligneous Flora of Heilongjiang. Heilongjiang Science Press, Harbin. |
[周以良, 董世林, 聂绍荃 (1986). 黑龙江树木志. 黑龙江科学技术出版社, 哈尔滨.] | |
[10] |
Coble AP, Cavaleri MA (2017). Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Tree Physiology, 37, 1337-1351.
DOI PMID |
[11] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[12] | Cui H, Zhang QQ, Chen MY, Wu Q, Feng Z, Wang Q, Hu QW (2020). Root C, N and C:N stoichiometry of 22 plant species in Nanji wetlands of Poyang Lake. Acta Ecologica Sinica, 40, 864-873. |
[崔浩, 张前前, 陈明月, 吴琴, 冯哲, 汪琴, 胡启武 (2020). 鄱阳湖南矶湿地22种植物根系碳氮及其化学计量研究. 生态学报, 40, 864-873.] | |
[13] | Cui NH, Liu XB, Zhang DJ, Zhang J, Liu Y, Deng CC, Ji TW, Chen YM (2014). The distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different age. Ecology and Environmental Sciences, 23, 188-195. |
[崔宁浩, 刘小兵, 张丹桔, 张健, 刘洋, 邓长春, 纪托未, 陈亚梅 (2014). 不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征. 生态环境学报, 23, 188-195.] | |
[14] | de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199. |
[15] | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580. |
[16] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
PMID |
[17] |
Fajardo A, Siefert A (2019). The interplay among intraspecific leaf trait variation, niche breadth and species abundance along light and soil nutrient gradients. Oikos, 128, 881-891.
DOI |
[18] | Feng Y, Wang YQ, Li YK, Han L, Wang HZ (2024). Relationship between leaf functional traits of Populus euphratica and soil factors. Acta Ecologica Sinica, 44, 1717-1726. |
[冯宇, 王雨晴, 李沅楷, 韩路, 王海珍 (2024). 胡杨叶功能性状与土壤因子的关系. 生态学报, 44, 1717-1726.] | |
[19] | Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, et al.(2021). A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 232, 973-1122. |
[20] | Fu RY, Zhang ZH, Hu C, Peng XB, Lu SN, Hu G (2020). Bibliometric analysis of research trends and focuses of plant functional traits. IOP Conference Series: Earth and Environmental Science, 615, 012102. DOI: 10.1088/1755- 1315/615/1/012102. |
[21] |
Gspaltl M, Bauerle W, Binkley D, Sterba H (2013). Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. Forest Ecology and Management, 288, 49-59.
PMID |
[22] | Jin MY, Jiang F, Jin GZ, Liu ZL (2018). Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages. Scientia Silvae Sinicae, 54(9), 18-26. |
[金明月, 姜峰, 金光泽, 刘志理 (2018). 不同年龄白桦比叶面积的生长阶段变异及冠层差异. 林业科学, 54(9), 18-26.] | |
[23] | Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122. |
[24] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[25] | Li L, Sun YT, Ren X, Mo LN, Hou YH, Yuan ZN (2021). Functional traits of branches and leaves, and their correlation with environmental factors for Lavandula angustifolia Mill. in different growth stages. Journal of Northeast Forestry University, 49(12), 21-28. |
[李玲, 孙宇婷, 任杏, 莫丽娜, 侯一航, 苑泽宁 (2021). 不同生长期薰衣草枝叶功能性状及其与环境因子的相关性. 东北林业大学学报, 49(12), 21-28.] | |
[26] | Li ZW, Liu Z, Gao GQ, Yang XL, Gu JC (2021). Shift from acquisitive to conservative root resource acquisition strategy associated with increasing tree age: a case study of Fraxinus mandshurica. Forests, 12, 1797. DOI: 10.3390/f12121797. |
[27] | Liu CC, He NP, Li Y, Zhang JH, Yan P, Wang RM, Wang RL (2024). Current and future trends of plant functional traits in macro-ecology. Chinese Journal of Plant Ecology, 48, 21-40. |
[刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽 (2024). 宏观生态学中的植物功能性状研究: 历史与发展趋势. 植物生态学报, 48, 21-40.]
DOI |
|
[28] | Liu GF, Liu YP, Baiyila DF, Cheng WY, Gao XL, Jiang LL (2017). Leaf traits of dominant plants of main forest communities in Daqinggou Nature Reserve. Acta Ecologica Sinica, 37, 4646-4655. |
[刘贵峰, 刘玉平, 达福白乙拉, 程伟燕, 高学磊, 姜丽丽 (2017). 大青沟自然保护区主要森林群落优势种的叶性状. 生态学报, 37, 4646-4655.] | |
[29] |
Liu J, Xiang WH, Xu X, Chen R, Tian DL, Peng CH, Fang X (2010). Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China. Chinese Journal of Plant Ecology, 34, 938-945.
DOI |
[刘佳, 项文化, 徐晓, 陈瑞, 田大伦, 彭长辉, 方晰 (2010). 湖南会同5个亚热带树种的细根构型及功能特征分析. 植物生态学报, 34, 938-945.]
DOI |
|
[30] | Liu MX, Liang GL (2016). Research progress on leaf mass per area. Chinese Journal of Plant Ecology, 40, 847-860. |
[刘明秀, 梁国鲁 (2016). 植物比叶质量研究进展. 植物生态学报, 40, 847-860.]
DOI |
|
[31] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[32] | Liu Z, Hikosaka K, Li F, Jin G (2020). Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 34, 458-467. |
[33] |
Lu YM, Wang MT, Chen XP, Lyu M, Zhong QL, Cheng DL (2019). Effects of the current-year shoot stem configuration on leaf biomass in different canopy heights of woody plants in evergreen broad-leaved forest in Jiangxi Province, China. Chinese Journal of Applied Ecology, 30, 3653-3661.
DOI |
[卢艺苗, 王满堂, 陈晓萍, 吕敏, 钟全林, 程栋梁 (2019). 江西常绿阔叶林木本植物不同冠层高度当年生小枝茎构型对叶生物量的影响. 应用生态学报, 30, 3653-3661.]
DOI |
|
[34] |
Martin AR, Thomas SC (2013). Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiology, 33, 1338-1353.
DOI PMID |
[35] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[36] |
Mommer L, Weemstra M (2012). The role of roots in the resource economics spectrum. New Phytologist, 195, 725-727.
DOI PMID |
[37] | Ning ZY, Li YL, Yang HL, Sun DC, Bi JD (2017). Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chinese Journal of Plant Ecology, 41, 1069-1080. |
[宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东 (2017). 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征. 植物生态学报, 41, 1069-1080.]
DOI |
|
[38] |
Pierangelini M, Stojkovic S, Orr PT, Beardall J (2014). Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity. Journal of Phycology, 50, 292-302.
DOI PMID |
[39] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[40] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI PMID |
[41] | Song YP, Yu YH, Li YT (2022). Leaf functional traits and relationships with soil properties of Zanthoxylum planispinum ‘dintanensis’ in plantations of different ages. Agronomy, 12, 1891. DOI: 10.3390/agronomy12081891. |
[42] | Song YH, Zhang P, Jin GZ (2021). Characteristics of shrub leaf carbon, nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages. Chinese Journal of Plant Ecology, 45, 952-960. |
[宋语涵, 张鹏, 金光泽 (2021). 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素. 植物生态学报, 45, 952-960.]
DOI |
|
[43] | Sun JH, Shi HL, Chen KY, Ji BM, Zhang J (2023). Research advances on trade-off relationships of plant fine root functional traits. Chinese Journal of Plant Ecology, 47, 1055-1070. |
[孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静 (2023). 植物细根功能性状的权衡关系研究进展. 植物生态学报, 47, 1055-1070.]
DOI |
|
[44] | Sun XJ, Chang SL, Song CC, Zhang YT (2018). Age-related N, P, and K stoichiometry in different organs of Picea schrenkiana. Chinese Journal of Ecology, 37, 1291-1298. |
[孙雪娇, 常顺利, 宋成程, 张毓涛 (2018). 雪岭云杉不同器官N、P、K化学计量特征随生长阶段的变化. 生态学杂志, 37, 1291-1298.] | |
[45] | Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[46] | van Ommen KA, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235. |
[47] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[48] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377. |
[49] | Wang ZY, Cheng L, Wang MT, Sun J, Zhong QL, Li M, Cheng DL (2018). Fine root traits of woody plants in deciduous forest of the Wuyi Mountains. Acta Ecologica Sinica, 38, 8088-8097. |
[王钊颖, 程林, 王满堂, 孙俊, 钟全林, 李曼, 程栋梁 (2018). 武夷山落叶林木本植物细根性状研究. 生态学报, 38, 8088-8097.] | |
[50] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[51] | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397. |
[52] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[53] | Xu R, Liu J, Wang LY, Yan Y, Ma XQ, Li M (2022). Analysis of root and leaf functional traits and C, N, P stoichiometry of Cunninghamia lanceolate from different provenances. Acta Ecologica Sinica, 42, 6298-6310. |
[徐睿, 刘静, 王利艳, 颜耀, 马祥庆, 李明 (2022). 不同地理种源杉木根叶功能性状与碳氮磷化学计量分析. 生态学报, 42, 6298-6310.] | |
[54] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong Region, Zhejiang Province, Eastern China. Chinese Journal of Plant Ecology, 34, 48-57. |
[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
DOI |
|
[55] | Yu QH, Jin GZ, Liu ZL (2020). Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis. Chinese Journal of Plant Ecology, 44, 939-950. |
[于青含, 金光泽, 刘志理 (2020). 植株大小、枝龄和环境共同驱动红松枝性状的变异. 植物生态学报, 44, 939-950.] | |
[56] | Yuan YN, Li ZC, Wang B, Zhang YJ, Huang SY (2021). Ecological stoichiometry in leaves, branches and roots of Torreya grandis with different forest ages and its stoichiometric homoeostasis. Journal of Nanjing Forestry University (Natural Sciences Edition), 45, 135-142. |
[原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡 (2021). 不同林龄榧树根、枝、叶的C、N、P化学计量及内稳性特征. 南京林业大学学报(自然科学版), 45, 135-142.]
DOI |
|
[57] |
Zhai JT, Li YL, Han ZJ, Li ZJ (2020). Morphological, structural and physiological differences in heteromorphic leaves of Euphrates poplar during development stages and at crown scales. Plant Biology, 22, 366-375.
DOI PMID |
[58] | Zhang JR, Yan XJ, Jia LQ, Fan AL, Wang X, Chen TT, Chen GS (2022). Morphology and C and N stoichiometry traits of fine roots of nine understory shrubs in subtropical natural evergreen broad-leaved forest. Acta Ecologica Sinica, 42, 3716-3726. |
[张进如, 闫晓俊, 贾林巧, 范爱连, 王雪, 陈廷廷, 陈光水 (2022). 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征. 生态学报, 42, 3716-3726.] | |
[59] | Zhang Q, Xiong GM, Li JX, Lu ZJ, Li YL, Xu WT, Wang Y, Zhao CM, Tang ZY, Xie ZQ (2018). Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types. Plant and Soil, 427, 305-319. |
[60] | Zhou XY (2012). The Research of Characteristic and Physiological Mechanism on Grapes Under Drought and Cold Stress. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[周香云 (2012). 葡萄抗旱抗寒特性及生理机制的研究. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] |
[1] | LIAO Su-Hui, NI Long-Kang, QIN Jia-Shuang, TAN Yu, GU Da-Xing. Hydraulic regulation strategies of karst forest species exhibit variation across different successional stages in the mid-subtropical zone [J]. Chin J Plant Ecol, 2024, 48(9): 1223-1231. |
[2] | JIAO Hui-Ying, LIU Li-Qiang, YANG Jia-Xin, QIN Wei, WANG Rui-Zhe. Effects of rhizosphere nitrogen-fixing, phosphate-solubilizing and potassium-solubilizing bacteria on leaf nutrients and physiological traits in different natural populations of Malus sieversii [J]. Chin J Plant Ecol, 2024, 48(7): 930-942. |
[3] | CAI Hui-Ying, LIANG Ya-Tao, LOU Hu, YANG Guang, SUN Long. Changes of fine root functional traits and rhizosphere bacterial community of Betula platyphylla after fire [J]. Chin J Plant Ecol, 2024, 48(7): 828-843. |
[4] | QIN Jia-Chen, WANG Huan, ZHU Jiang, WANG Yang, TIAN Chen, BAI Yong-Fei, YANG Pei-Zhi, ZHENG Shu-Xia. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects [J]. Chin J Plant Ecol, 2024, 48(7): 858-871. |
[5] | WEN Jia, ZHANG Xin-Na, WANG Juan, ZHAO Xiu-Hai, ZHANG Chun-Yu. Traits mediate response of seedling survival rate to neighborhood competition and abiotic environment [J]. Chin J Plant Ecol, 2024, 48(6): 719-729. |
[6] | PENG Zhong-Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variations and relationships of three Acer species in different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(6): 730-743. |
[7] | LIU Yao, ZHONG Quan-Lin, XU Chao-Bin, CHENG Dong-Liang, ZHENG Yue-Fang, ZOU Yu-Xing, ZHANG Xue, ZHENG Xin-Jie, ZHOU Yun-Ruo. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(6): 744-759. |
[8] | LI Shan-Shan, LIU Xue-Qin. Analysis of functional traits of wetland plants in floodplains in middle reaches of Yangtze River [J]. Chin J Plant Ecol, 2024, 48(5): 601-611. |
[9] | XU Zi-Yi, JIN Guang-Ze. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaf-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[10] | CHANG Chen-Hui, ZHU Biao, ZHU Jiang-Ling, JI Cheng-Jun, YANG Wan-Qin. Review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[11] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[12] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[13] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[14] | Ma Bin Wei-Wei SHE Qin Huan Song Chunyang Yuan Xinyue Chun MIAO Liu Liang Feng Wei Qin shugao Yuqing Zhang. Effects of nitrogen and water addition on seed functional traits of Artemisia ordosica [J]. Chin J Plant Ecol, 2024, 48(12): 1637-1649. |
[15] | mingze xu hongxian Zhao cheng Li manle li Yun Tian Peng Liu Zha tianshan. Characteristics of seasonal leaf trait network and its driving factors in Artemisia ordosica in Mu Us sandy land [J]. Chin J Plant Ecol, 2024, 48(12): 1650-1665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn