Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1501-1509.DOI: 10.17521/cjpe.2023.0290 cstr: 32100.14.cjpe.2023.0290
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
WANG Zhen-Yu, HUANG Zhi-Qun*()
Received:
2023-10-12
Accepted:
2024-02-08
Online:
2024-11-20
Published:
2024-12-03
Contact:
*HUANG Zhi-Qun (zhiqunhuang@fjnu.edu.cn)
Supported by:
WANG Zhen-Yu, HUANG Zhi-Qun. Effects of leaf traits on herbivory across 27 woody plants in the subtropical forest: testing the growth-defense trade-off hypothesis[J]. Chin J Plant Ecol, 2024, 48(11): 1501-1509.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0290
Fig. 1 Phylogenetic tree and leaf damage (%) on young, fully expanded leaves of 27 tree species in subtropical forests (mean ± SD). Number of repetitions in parentheses.
Fig. 2 Biplot of the factor loadings for traits on the first two axes of the phylogenetic principal component analysis (PPCA, A) and biplot of species coordinates arrayed on the first two axes of the phylogenetic principal component analysis (B). Cellulose, cellulose content; C:N, carbon:nitrogen; LA, leaf area; LC, leaf carbon content; LDMC, leaf dry matter content; Lignin, lignin content; LN, leaf nitrogen content; LP, leaf phosphorus content; LT, leaf thickness; Phenolics, soluble phenolics content; SLA, specific leaf area; Tannin, tannin content.
性状 Trait | LA | LP | LT | LC | LN | LDMC | SLA | Tannin | Phenolics | Cellulose | Lignin |
---|---|---|---|---|---|---|---|---|---|---|---|
LP | -0.93*** | ||||||||||
LT | 0.79*** | -0.56*** | |||||||||
LC | 1.13** | -1.20*** | 1.20*** | ||||||||
LN | 0.19 | 0.77 | 0.21 | -0.39 | |||||||
LDMC | 0.32 | -1.08** | 0.89 | 0.37 | -0.35* | ||||||
SLA | -0.85*** | 0.89*** | -1.24*** | -0.44*** | 0.14 | -0.36*** | |||||
Tannin | -0.59*** | 0.49*** | -0.72*** | -0.22*** | 0.00 | -0.12* | 0.42*** | ||||
Phenolics | -0.72** | 0.94*** | -1.09*** | -0.56*** | 0.01 | -0.30* | 0.81*** | 1.57*** | |||
Cellulose | -0.68** | 0.27 | -0.30 | -0.28 | 0.01 | 0.21 | -0.11 | 0.24 | -0.19 | ||
Lignin | -1.20*** | 0.79*** | -1.48*** | -0.20 | -0.05 | -0.20 | 0.77*** | 2.01*** | 0.38 | 0.11 | |
C:N | 0.24 | -1.07** | 0.25 | 0.68* | -0.90*** | 0.51* | -0.91* | -0.57 | -0.31 | -0.18 | 0.04 |
Table 1 Coefficient of univariate phylogenetic generalized least squares (PGLS) models for trait pairs of 27 woody species in subtropical forests
性状 Trait | LA | LP | LT | LC | LN | LDMC | SLA | Tannin | Phenolics | Cellulose | Lignin |
---|---|---|---|---|---|---|---|---|---|---|---|
LP | -0.93*** | ||||||||||
LT | 0.79*** | -0.56*** | |||||||||
LC | 1.13** | -1.20*** | 1.20*** | ||||||||
LN | 0.19 | 0.77 | 0.21 | -0.39 | |||||||
LDMC | 0.32 | -1.08** | 0.89 | 0.37 | -0.35* | ||||||
SLA | -0.85*** | 0.89*** | -1.24*** | -0.44*** | 0.14 | -0.36*** | |||||
Tannin | -0.59*** | 0.49*** | -0.72*** | -0.22*** | 0.00 | -0.12* | 0.42*** | ||||
Phenolics | -0.72** | 0.94*** | -1.09*** | -0.56*** | 0.01 | -0.30* | 0.81*** | 1.57*** | |||
Cellulose | -0.68** | 0.27 | -0.30 | -0.28 | 0.01 | 0.21 | -0.11 | 0.24 | -0.19 | ||
Lignin | -1.20*** | 0.79*** | -1.48*** | -0.20 | -0.05 | -0.20 | 0.77*** | 2.01*** | 0.38 | 0.11 | |
C:N | 0.24 | -1.07** | 0.25 | 0.68* | -0.90*** | 0.51* | -0.91* | -0.57 | -0.31 | -0.18 | 0.04 |
PPCA 1 | PPCA 2 | PPCA 3 | PPCA 4 | |
---|---|---|---|---|
叶面积 Leaf area | 0.90 | -0.38 | -0.01 | -0.02 |
叶磷含量 Leaf phosphorus content | -0.90 | -0.11 | 0.36 | 0.00 |
叶厚度 Leaf thickness | 0.96 | -0.08 | 0.15 | -0.01 |
叶碳含量 Leaf carbon content | 0.67 | 0.00 | -0.60 | -0.30 |
叶氮含量 Leaf nitrogen content | -0.06 | -0.32 | 0.67 | -0.59 |
碳氮比 Carbon:nitrogen | 0.21 | 0.30 | -0.75 | 0.47 |
叶干物质含量 Leaf dry matter content | 0.43 | 0.66 | -0.16 | 0.31 |
比叶面积 Specific leaf area | -0.85 | -0.38 | 0.10 | -0.18 |
单宁含量 Tannin content | -0.98 | -0.05 | -0.10 | 0.00 |
可溶性酚含量 Soluble phenolics content | -0.70 | -0.46 | 0.14 | 0.48 |
纤维素含量 Cellulose content | -0.19 | 0.84 | 0.42 | -0.05 |
木质素含量 Lignin content | -0.80 | 0.09 | -0.40 | -0.30 |
Table 2 Factor loadings of the first four components of phylogenetic principal component analysis (PPCA) on traits of 27 woody species in subtropical forests
PPCA 1 | PPCA 2 | PPCA 3 | PPCA 4 | |
---|---|---|---|---|
叶面积 Leaf area | 0.90 | -0.38 | -0.01 | -0.02 |
叶磷含量 Leaf phosphorus content | -0.90 | -0.11 | 0.36 | 0.00 |
叶厚度 Leaf thickness | 0.96 | -0.08 | 0.15 | -0.01 |
叶碳含量 Leaf carbon content | 0.67 | 0.00 | -0.60 | -0.30 |
叶氮含量 Leaf nitrogen content | -0.06 | -0.32 | 0.67 | -0.59 |
碳氮比 Carbon:nitrogen | 0.21 | 0.30 | -0.75 | 0.47 |
叶干物质含量 Leaf dry matter content | 0.43 | 0.66 | -0.16 | 0.31 |
比叶面积 Specific leaf area | -0.85 | -0.38 | 0.10 | -0.18 |
单宁含量 Tannin content | -0.98 | -0.05 | -0.10 | 0.00 |
可溶性酚含量 Soluble phenolics content | -0.70 | -0.46 | 0.14 | 0.48 |
纤维素含量 Cellulose content | -0.19 | 0.84 | 0.42 | -0.05 |
木质素含量 Lignin content | -0.80 | 0.09 | -0.40 | -0.30 |
Fig. 4 Effects of leaf traits and relative growth rates on the mean proportion of leaf damage by insect herbivores in most parsimonious phylogenetic generalized least squares (PGLS) model (A), and effects of leaf functional traits on relative growth rate in most parsimonious PGLS model (B). Points and lines show the means and 95% credible intervals of the coefficients, respectively. Cellulose, cellulose content; LDMC, leaf dry matter content; LP, leaf phosphorus content; RGR, relative growth rate; Tannin, tannin content. *, p < 0.05; ***, p < 0.001.
[1] | Agrawal AA (2007). Macroevolution of plant defense strategies. Trends in Ecology & Evolution, 22, 103-109. |
[2] | Agrawal AA, Fishbein M (2006). Plant defense syndromes. Ecology, 87, S132-S149. |
[3] |
Agrawal AA, Weber MG (2015). On the study of plant defence and herbivory using comparative approaches: How important are secondary plant compounds. Ecology Letters, 18, 985-991.
DOI PMID |
[4] | Albert G, Gauzens B, Loreau M, Wang S, Brose U (2022). The hidden role of multi-trophic interactions in driving diversity- productivity relationships. Ecology Letters, 25, 405-415. |
[5] | Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85-88. |
[6] |
Cappelli SL, Pichon NA, Kempel A, Allan E (2020). Sick plants in grassland communities: a growth-defense trade- off is the main driver of fungal pathogen abundance. Ecology Letters, 23, 1349-1359.
DOI PMID |
[7] | Cárdenas RE, Valencia R, Kraft NJB, Argoti A, Dangles O (2014). Plant traits predict inter- and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community. Journal of Ecology, 102, 939-952. |
[8] | Carmona D, Lajeunesse MJ, Johnson MTJ (2011). Plant traits that predict resistance to herbivores. Functional Ecology, 25, 358-367. |
[9] |
Chauvin KM, Asner GP, Martin RE, Kress WJ, Wright SJ, Field CB (2018). Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community. Oecologia, 186, 765-782.
DOI PMID |
[10] | Coley PD, Barone JA (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305-335. |
[11] |
Coley PD, Bryant JP, Chapin III FS (1985). Resource availability and plant antiherbivore defense. Science, 230, 895-899.
DOI PMID |
[12] | Coley PD, Kursar TA (2014). On tropical forests and their pests. Science, 343, 35-36. |
[13] | Endara MJ, Coley PD (2011). The resource availability hypothesis revisited: a meta-analysis. Functional Ecology, 25, 389-398. |
[14] |
Fichtner A, Härdtle W, Bruelheide H, Kunz M, Li Y, von Oheimb G (2018). Neighbourhood interactions drive overyielding in mixed-species tree communities. Nature Communications, 9, 1144-1153.
DOI PMID |
[15] | Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Sääksjärvi I, Schultz JC, Coley PD (2006). The growth- defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162. |
[16] | Goto M, Ehara H, Karita S, Takabe K, Ogawa N, Yamada Y, Ogawa S, Yahaya MS, Morita O (2003). Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Science, 164, 349-356. |
[17] | Huang ZQ, Ran SS, Fu YR, Wan XH, Song X, Chen YX, Yu ZP (2022). Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. Journal of Ecology, 110, 2179-2189. |
[18] |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
DOI PMID |
[19] | Kursar TA, Coley PD (2003). Convergence in defense syndromes of young leaves in tropical rainforests. Biochemical Systematics and Ecology, 31, 929-949. |
[20] |
Lebrija-Trejos E, Wright SJ, Hernández A, Reich PB (2014). Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology, 95, 940-951.
PMID |
[21] |
Levi T, Barfield M, Barrantes S, Sullivan C, Holt RD, Terborgh J (2019). Tropical forests can maintain hyperdiversity because of enemies. Proceedings of the National Academy of Sciences of the United States of America, 116, 581-586.
DOI PMID |
[22] | Li Y, Schmid B, Schuldt A, Li S, Wang MQ, Fornoff F, Staab M, Guo PF, Anttonen P, Chesters D, Bruelheide H, Zhu CD, Ma K, Liu X (2023). Multitrophic arthropod diversity mediates tree diversity effects on primary productivity. Nature Ecology & Evolution, 7, 832-840. |
[23] |
Liu X, Swenson NG, Lin D, Mi X, Umaña MN, Schmid B, Ma K (2016). Linking individual-level functional traits to tree growth in a subtropical forest. Ecology, 97, 2396-2405.
DOI PMID |
[24] | Luo YQ, Yu MS, Yu JJ, Zheng SL, Liu JJ, Yu MJ (2017). Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region. Chinese Journal of Plant Ecology, 41, 1033-1040. |
[骆杨青, 余梅生, 余晶晶, 郑诗璐, 刘佳佳, 于明坚 (2017). 千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响. 植物生态学报, 41, 1033-1040.]
DOI |
|
[25] |
Moles AT, Peco B, Wallis IR, Foley WJ, Poore AGB, Seabloom EW, Vesk PA, Bisigato AJ, Cella-Pizarro L, Clark CJ, Cohen PS, Cornwell WK, Edwards W, Ejrnaes R, Gonzales-Ojeda T, et al. (2013). Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? New Phytologist, 198, 252-263.
DOI PMID |
[26] | Njoroge B, Li Y, Otieno D, Liu S, Wei S, Meng Z, Zhang Q, Zhang D, Liu J, Chu G, Haider FU, Tenhunen J (2023). Seasonal droughts drive up carbon gain in a subtropical forest. Journal of Plant Ecology, 16, rtac088. DOI: 10.1093/jpe/rtac088. |
[27] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[28] | Revell LJ (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223. |
[29] | Scavo A, Abbate C, Mauromicale G (2019). Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant and Soil, 442, 23-48. |
[30] |
Schuldt A, Assmann T, Bruelheide H, Durka W, Eichenberg D, Härdtle W, Kröber W, Michalski SG, Purschke O (2014). Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytologist, 202, 864-873.
DOI PMID |
[31] |
Schuldt A, Baruffol M, Böhnke M, Bruelheide H, Härdtle W, Lang AC, Nadrowski K, Von Oheimb G, Voigt W, Zhou H, Assmann T, Fridley J (2010). Tree diversity promotes insect herbivory in subtropical forests of south-east China. Journal of Ecology, 98, 917-926.
PMID |
[32] |
Schuldt A, Bruelheide H, Durka W, Eichenberg D, Fischer M, Kröber W, Härdtle W, Ma K, Michalski SG, Palm WU, Schmid B, Welk E, Zhou H, Assmann T (2012). Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecology Letters, 15, 732-739.
DOI PMID |
[33] |
Schuldt A, Bruelheide H, Härdtle W, Assmann T, Li Y, Ma K, von Oheimb G, Zhang J (2015). Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth. Journal of Ecology, 103, 563-571.
PMID |
[34] |
Schuldt A, Hönig L, Li Y, Fichtner A, Härdtle W, von Oheimb G, Welk E, Bruelheide H (2017). Herbivore and pathogen effects on tree growth are additive, but mediated by tree diversity and plant traits. Ecology and Evolution, 7, 7462-7474.
DOI PMID |
[35] |
Schuldt A, Liu X, Buscot F, Bruelheide H, Erfmeier A, He JS, Klein AM, Ma K, Scherer-Lorenzen M, Schmid B, Scholten T, Tang Z, Trogisch S, Wirth C, Wubet T, Staab M (2023). Carbon-biodiversity relationships in a highly diverse subtropical forest. Global Change Biology, 29, 5321-5333.
DOI PMID |
[36] |
Scoffoni C, Vuong C, Diep S, Cochard H, Sack L (2014). Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiology, 164, 1772-1788.
DOI PMID |
[37] | Shen Y, Umaña MN, Li W, Fang M, Chen Y, Lu H, Yu S (2019). Coordination of leaf, stem and root traits in determining seedling mortality in a subtropical forest. Forest Ecology and Management, 446, 285-292. |
[38] | Wan X, Joly FX, Jia H, Zhu M, Fu Y, Huang Z (2023). Functional identity drives tree species richness-induced increases in litterfall production and forest floor mass in young tree communities. New Phytologist, 240, 1003-1014. |
[39] |
Wang X, He Y, Sedio BE, Jin L, Ge X, Glomglieng S, Cao M, Yang J, Swenson NG, Yang J (2023). Phytochemical diversity impacts herbivory in a tropical rainforest tree community. Ecology Letters, 26, 1898-1910.
DOI PMID |
[40] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[41] | Zhang S, Xu GR, Zhang YX, Zhang WF, Cao M (2023). Canopy height, rather than neighborhood effects, shapes leaf herbivory in a tropical rainforest. Ecology, 104, e4028. DOI: 10.1002/ecy.4028. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn