Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (10): 977-989.DOI: 10.17521/cjpe.2018.0013
Special Issue: 生态系统结构与功能; 生物多样性
• Review • Next Articles
Received:
2018-01-11
Online:
2018-10-20
Published:
2019-01-30
Contact:
Guang-Xuan HAN
Supported by:
ZHANG Li-Wen, HAN Guang-Xuan. A review on the relationships between plant genetic diversity and ecosystem functioning[J]. Chin J Plan Ecolo, 2018, 42(10): 977-989.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0013
名词术语 Glossary | 解释 Explanation |
---|---|
遗传多样性 Genetic diversity | 种群内个体间遗传变异的程度。 The degree of genetic variation among individuals in a population. |
基因丰富度 Allelic richness | 所检测位点上等位基因的平均数目。 The average number of alleles detected at the detected locus. |
基因多样性 Allelic diversity | 包含位点上基因数目和频率信息的一类遗传多样性指数, 比如: Shannon信息指数和期望杂合度。 A class of genetic diversity indices containing information about the number and frequency of genes at a locus, such as: Shannon information index and expected heterozygosity. |
基因型 Genotype | 一个个体在指定数量的位点上等位基因的组成。 The composition of alleles of an individual at a specified number of loci. |
基因型丰富度 Genotypic richness | 一个种群中基因型的数目。 The number of genotypes in a population. |
基因型均匀度 Genotypic eveness | 基因型多度的分布。如果一个种群中各基因型多度等同, 那么基因型均匀度为1; 如果一个种群只有一个基因型, 那么该种群基因型均匀度为0。 The distribution of genotypic abundance. The genotype evenness is 1 if genotypic abundance is equal in a population, and 0 if there is only one genotype in a population. |
基因型相异度 Genotypic dissimilarity | 一个种群中两两基因型间遗传距离的平均值。 The average genetic distance between two genotypes in a population. |
基因型亲缘度 Genotypic relatedness | 与基因型相异度相反, 指一个种群中两两基因型间亲缘程度的平均值。对于植物微卫星分子标记数据, 二倍体可以用STORM软件( The average value of relatedness between two genotypes in a population, which is contrary to genotypic dissimilarity. For plant microsatellite marker data, genotypic relatedness of diploids can be calculated with STORM software ( |
适应性遗传多样性 Adaptive genetic diversity | 适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异。一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异。 Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation. |
中性遗传多样性 Neutral genetic diversity | 中性遗传多样性是由不影响表型的序列变异组成。中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况。 Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation. |
品种 Cultivar | 为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状。 Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually. |
近交衰退 Inbreeding depression | 由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率。 Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles. |
远交衰退 Outbreeding depression | 不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低。 Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring. |
功能多样性 Functional diversity | 植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性。 Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity. |
奠基者多样性 Founder diversity | 这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性。奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应。 This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring. |
系统发育多样性 Phylogenetic diversity | 群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和。 The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species). |
Table 1 The explanation of the plant genetic diversity-ecological functioning glossary
名词术语 Glossary | 解释 Explanation |
---|---|
遗传多样性 Genetic diversity | 种群内个体间遗传变异的程度。 The degree of genetic variation among individuals in a population. |
基因丰富度 Allelic richness | 所检测位点上等位基因的平均数目。 The average number of alleles detected at the detected locus. |
基因多样性 Allelic diversity | 包含位点上基因数目和频率信息的一类遗传多样性指数, 比如: Shannon信息指数和期望杂合度。 A class of genetic diversity indices containing information about the number and frequency of genes at a locus, such as: Shannon information index and expected heterozygosity. |
基因型 Genotype | 一个个体在指定数量的位点上等位基因的组成。 The composition of alleles of an individual at a specified number of loci. |
基因型丰富度 Genotypic richness | 一个种群中基因型的数目。 The number of genotypes in a population. |
基因型均匀度 Genotypic eveness | 基因型多度的分布。如果一个种群中各基因型多度等同, 那么基因型均匀度为1; 如果一个种群只有一个基因型, 那么该种群基因型均匀度为0。 The distribution of genotypic abundance. The genotype evenness is 1 if genotypic abundance is equal in a population, and 0 if there is only one genotype in a population. |
基因型相异度 Genotypic dissimilarity | 一个种群中两两基因型间遗传距离的平均值。 The average genetic distance between two genotypes in a population. |
基因型亲缘度 Genotypic relatedness | 与基因型相异度相反, 指一个种群中两两基因型间亲缘程度的平均值。对于植物微卫星分子标记数据, 二倍体可以用STORM软件( The average value of relatedness between two genotypes in a population, which is contrary to genotypic dissimilarity. For plant microsatellite marker data, genotypic relatedness of diploids can be calculated with STORM software ( |
适应性遗传多样性 Adaptive genetic diversity | 适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异。一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异。 Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation. |
中性遗传多样性 Neutral genetic diversity | 中性遗传多样性是由不影响表型的序列变异组成。中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况。 Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation. |
品种 Cultivar | 为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状。 Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually. |
近交衰退 Inbreeding depression | 由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率。 Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles. |
远交衰退 Outbreeding depression | 不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低。 Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring. |
功能多样性 Functional diversity | 植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性。 Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity. |
奠基者多样性 Founder diversity | 这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性。奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应。 This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring. |
系统发育多样性 Phylogenetic diversity | 群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和。 The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species). |
效应类别(按生物学角度来分类) Types of genetic diversity effects (in terms of biology) | 效应区别 The differences among types of genetic diversity effect | 生态系统功能 Ecosystem functioning | 相关机制 假说 Hypothesis | 假说内容 Content of hypothesis |
---|---|---|---|---|
加性效应 Additive effects | 不同基因型对生态系统功能的效应是独立的、可加的; 基因型间相互作用不影响其生态系统功能效应。 The effects of different genotypes on ecosystem functioning are independent and additive, and the interactions among genotypes do not affect their effects on ecosystem functioning. | 高营养级生物群落 结构、初级生产力、养分循环、生态系统稳定性 Community structure of higher trophic levels, primary productivity, nutrientcycling and ecosystem stability | 优势效应 Dominant effect | 基因型多样性高的系统中包含对系统有利的基因型概率高于单基因型系统, 因此基因型多样性高有利于维持生态系统结构和功能。验证方法请见1.1和1.2节。 Systems with high genotypic diversity have a higher probability of containing genotypes beneficial to the system than those with single genotype, and thus high genotypic diversity is conducive to maintaining ecosystem structure and function. Please see sections 1.1 and 1.2 for the methods for testing this hypotheses. |
非加性效应 Non-additive effects | 不同基因型对生态系统功能效应是非独立的、不可加的; 基因型间相互作用对生态系统功能产生交互效应。The effects of different genotypes on ecosystem functioning are dependent and nonadditive, and the interactions among genotypes affect their effects on ecosystem functioning. | 高营养级生物群落结构 Community structure of higher trophic levels | 资源化假说 The resource specialization hypothesis | 大多数植食性节肢动物表现出一定程度的食性偏好, 随着基因型多样性的增加, 相关联的植食性节肢动物多样性也增加。验证方法请见1.1节。 Most of the herbivorous arthropods showed food preference. With the increase of genotypic diversity, the diversity of associated herbivorous arthropods also increased. Please see Section 1.1 for the methods for testing this hypothesis. |
更多个体假说 The more individuals hypothesis | 如果地上净生产力随着基因型多样性升高, 那么能够提供更多的能量给更多植食性节肢动物, 这些植食性节肢动物多样性随之增加, 继而捕食者也会增加。验证方法请见1.1节。 If net aboveground productivity increases with genotypic diversity, more energy can be provided to more herbivorous arthropods, and the diversity of these herbivorous arthropods increases, followed by increased predators. Please see Section 1.1 for the methods for testing this hypothesis. | |||
初级生产力、养分循环、生态系统稳定性 Primary productivity, nutrient cycling and ecosystem stability | 性状独立互补效应 Trait-indepen-dent complementarity | 在多基因型系统, 如果某些基因型的生态系统功能比它们在单基因型系统提高了, 但与基因型的功能性状无关, 而且不以抑制其他基因型的适合度为代价(不同基因型占据不重叠的生态位形成生态位互补或者基因型间存在正作用), 则为正效应。验证方法请见1.2节。 In genotypic mixture, if the ecosystem functions of some genotypes are improved than that in the genotypic monoculture but are not related to the functional traits of the genotypes, and are also not at the expense of inhibiting the fitness of other genotypes (different genotypes occupy non-overlapping niches to form niche complementarities or have positive effects between genotypes). It is a positive effect. Please see section 1.2 for the methods for testing this hypothesis. | ||
性状依赖互补效应 Trait-dependent complementarity | 在多基因型系统, 如果具有特殊功能性状基因型(比如, 特殊功能性状使得基因型间形成嵌套生态位)的生态功能比其在单基因型系统增加了, 且不以抑制其他基因型适合度为代价, 则为正效应。验证方法请见1.2节。 In genotypic mixture, if the ecological functions of genotypes with special functional traits (for example, the nested niches formed between genotypes) are increased than those of genotypic monoculture, and not at the expense of inhibiting the fitness of other genotypes, the effect is positive. Please see section 1.2 the methods for testing this hypothesis. |
Table 2 Main genetic diversity-ecosystem functioning hypotheses
效应类别(按生物学角度来分类) Types of genetic diversity effects (in terms of biology) | 效应区别 The differences among types of genetic diversity effect | 生态系统功能 Ecosystem functioning | 相关机制 假说 Hypothesis | 假说内容 Content of hypothesis |
---|---|---|---|---|
加性效应 Additive effects | 不同基因型对生态系统功能的效应是独立的、可加的; 基因型间相互作用不影响其生态系统功能效应。 The effects of different genotypes on ecosystem functioning are independent and additive, and the interactions among genotypes do not affect their effects on ecosystem functioning. | 高营养级生物群落 结构、初级生产力、养分循环、生态系统稳定性 Community structure of higher trophic levels, primary productivity, nutrientcycling and ecosystem stability | 优势效应 Dominant effect | 基因型多样性高的系统中包含对系统有利的基因型概率高于单基因型系统, 因此基因型多样性高有利于维持生态系统结构和功能。验证方法请见1.1和1.2节。 Systems with high genotypic diversity have a higher probability of containing genotypes beneficial to the system than those with single genotype, and thus high genotypic diversity is conducive to maintaining ecosystem structure and function. Please see sections 1.1 and 1.2 for the methods for testing this hypotheses. |
非加性效应 Non-additive effects | 不同基因型对生态系统功能效应是非独立的、不可加的; 基因型间相互作用对生态系统功能产生交互效应。The effects of different genotypes on ecosystem functioning are dependent and nonadditive, and the interactions among genotypes affect their effects on ecosystem functioning. | 高营养级生物群落结构 Community structure of higher trophic levels | 资源化假说 The resource specialization hypothesis | 大多数植食性节肢动物表现出一定程度的食性偏好, 随着基因型多样性的增加, 相关联的植食性节肢动物多样性也增加。验证方法请见1.1节。 Most of the herbivorous arthropods showed food preference. With the increase of genotypic diversity, the diversity of associated herbivorous arthropods also increased. Please see Section 1.1 for the methods for testing this hypothesis. |
更多个体假说 The more individuals hypothesis | 如果地上净生产力随着基因型多样性升高, 那么能够提供更多的能量给更多植食性节肢动物, 这些植食性节肢动物多样性随之增加, 继而捕食者也会增加。验证方法请见1.1节。 If net aboveground productivity increases with genotypic diversity, more energy can be provided to more herbivorous arthropods, and the diversity of these herbivorous arthropods increases, followed by increased predators. Please see Section 1.1 for the methods for testing this hypothesis. | |||
初级生产力、养分循环、生态系统稳定性 Primary productivity, nutrient cycling and ecosystem stability | 性状独立互补效应 Trait-indepen-dent complementarity | 在多基因型系统, 如果某些基因型的生态系统功能比它们在单基因型系统提高了, 但与基因型的功能性状无关, 而且不以抑制其他基因型的适合度为代价(不同基因型占据不重叠的生态位形成生态位互补或者基因型间存在正作用), 则为正效应。验证方法请见1.2节。 In genotypic mixture, if the ecosystem functions of some genotypes are improved than that in the genotypic monoculture but are not related to the functional traits of the genotypes, and are also not at the expense of inhibiting the fitness of other genotypes (different genotypes occupy non-overlapping niches to form niche complementarities or have positive effects between genotypes). It is a positive effect. Please see section 1.2 for the methods for testing this hypothesis. | ||
性状依赖互补效应 Trait-dependent complementarity | 在多基因型系统, 如果具有特殊功能性状基因型(比如, 特殊功能性状使得基因型间形成嵌套生态位)的生态功能比其在单基因型系统增加了, 且不以抑制其他基因型适合度为代价, 则为正效应。验证方法请见1.2节。 In genotypic mixture, if the ecological functions of genotypes with special functional traits (for example, the nested niches formed between genotypes) are increased than those of genotypic monoculture, and not at the expense of inhibiting the fitness of other genotypes, the effect is positive. Please see section 1.2 the methods for testing this hypothesis. |
1 |
Abbott JM, Grosberg RK, Williams SL, Stachowicz JJ ( 2017). Multiple dimensions of intraspecific diversity affect biomass of eelgrass and its associated community. Ecology, 98, 3152-3164.
DOI URL |
2 |
Bailey JK ( 2011). From genes to ecosystems: A genetic basis to ecosystem services. Population Ecology, 53, 47-52.
DOI URL |
3 | Bailey JK, Schweitzer JA, Ubeda F, Koricheva J, LeRoy CJ, Madritch MD, Rehill BJ, Bangert RK, Fischer DG, Allan GJ, Whitham TG ( 2009). From genes to ecosystems: A synthesis of the effects of plant genetic factors across levels of organization. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 1607-1616. |
4 |
Bernays E, Graham M ( 1988). On the evolution of host specificity in phytophagous arthropods. Ecology, 69, 886-892.
DOI URL |
5 |
Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Hardtle W, He JS, Klein AM, Kuhn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, von Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B ( 2014). Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89.
DOI URL |
6 |
Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R ( 2010). Global biodiversity: Indicators of recent declines. Science, 328, 1164-1168.
DOI URL |
7 |
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE ( 2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
DOI URL |
8 |
Cadotte MW, Livingstone SW, Yasui SLE, Dinnage R, Li JT, Marushia R, Santangelo J, Shu W ( 2017). Explaining ecosystem multifunction with evolutionary models. Ecology, 98, 3175-3187.
DOI URL |
9 |
Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ ( 2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 104, 18123-18128.
DOI URL |
10 |
Cook-Patton SC, McArt SH, Parachnowitsch AL, Thaler JS, Agrawal AA ( 2011). A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology, 92, 915-923.
DOI URL |
11 |
Crawford KM, Rudgers JA ( 2012). Plant species diversity and genetic diversity within a dominant species interactively affect plant community biomass. Journal of Ecology, 100, 1512-1521.
DOI URL |
12 |
Crawford KM, Rudgers JA ( 2013). Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community. Ecology, 94, 1025-1035.
DOI URL |
13 |
Crawford KM, Whitney KD ( 2010). Population genetic diversity influences colonization success. Molecular Ecology, 19, 1253-1263.
DOI URL |
14 |
Crutsinger GM, Carter BE, Rudgers JA ( 2013). Soil nutrients trump intraspecific effects on understory plant communities. Oecologia, 173, 1531-1538.
DOI URL |
15 |
Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ ( 2006). Plant genotypic diversity predicts community structure and governs an ecosystem process. Science, 313, 966-968.
DOI URL |
16 |
Crutsinger GM, Collins MD, Fordyce JA, Sanders NJ ( 2008 a). Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity. Oikos, 117, 255-264.
DOI URL |
17 |
Crutsinger GM, Reynolds WN, Classen AT, Sanders NJ ( 2008 b). Disparate effects of plant genotypic diversity on foliage and litter arthropod communities. Oecologia, 158, 65-75.
DOI URL |
18 | Darwin C ( 1859). On the Origin of Species by Means of Natural Selection. J. Murray, London. |
19 |
Dooley A, Isbell F, Kirwan L, Connolly J, Finn JA, Brophy C ( 2015). Testing the effects of diversity on ecosystem multifunctionality using a multivariate model. Ecology Letters, 18, 1242-1251.
DOI URL |
20 |
Duffy JE, Richardson JP, Canuel EA ( 2003). Grazer diversity effects on ecosystem functioning in seagrass beds. Ecology Letters, 6, 637-645.
DOI URL |
21 | Ehlers A, Worm B, Reusch TBH ( 2008). Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Marine Ecology Progress Series, 355, 1-7. |
22 |
Fischer DG, Wimp GM, Hersch-Green E, Bangert RK, Leroy CJ, Bailey JK, Schweitzer JA, Dirks C, Hart SC, Allan GJ, Whitham TG ( 2017). Tree genetics strongly affect forest productivity, but intraspecific diversity-productivity relationships do not. Functional Ecology, 31, 520-529.
DOI URL |
23 |
Forsman A ( 2014). Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proceedings of the National Academy of Sciences of the United States of America, 111, 302-307.
DOI URL |
24 |
Fox JW ( 2005). Interpreting the “selection effect” of biodiversity on ecosystem function. Ecology Letters, 8, 846-856.
DOI URL |
25 |
Frasier TR ( 2008). STORM: Software for testing hypotheses of relatedness and mating patterns. Molecular Ecology Resources, 8, 1263-1266.
DOI URL |
26 |
Fridley JD, Grime JP ( 2010). Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology, 91, 2272-2283.
DOI URL |
27 |
Gamfeldt L, Hillebrand H, Jonsson PR ( 2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
DOI URL |
28 | Gamfeldt L, Roger F ( 2017). Revisiting the biodiversity-?ecosystem multifunctionality relationship. Nature Ecology & Evolution, 1, 168. DOI: 10.1038/s41559-017-0168. |
29 |
Gerstenmaier CE, Krueger-Hadfield SA, Sotka EE ( 2016). Genotypic diversity in a non-native ecosystem engineer has variable impacts on productivity. Marine Ecology Progress Series, 556, 79-89.
DOI URL |
30 |
Grady KC, Ferrier SM, Kolb TE, Hart SC, Allan GJ, Whitham TG ( 2011). Genetic variation in productivity of foundation riparian species at the edge of their distribution: Implications for restoration and assisted migration in a warming climate. Global Change Biology, 17, 3724-3735.
DOI URL |
31 |
Hector A, Bagchi R ( 2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI URL |
32 | Hersch-Green EI, Turley NE, Johnson MTJ ( 2011). Community genetics: What have we accomplished and where should we be going? Philosophical Transactions of the Royal Society B-Biological Sciences, 366, 1453-1460. |
33 |
Huang K, Ritland K, Guo ST, Dunn DW, Chen D, Ren Y, Qi XG, Zhang P, He G, Li BG ( 2015). Estimating pairwise relatedness between individuals with different levels of ploidy. Molecular Ecology Resources, 15, 772-784.
DOI URL |
34 |
Hughes AR ( 2014). Genotypic diversity and trait variance interact to affect marsh plant performance. Journal of Ecology, 102, 651-658.
DOI URL |
35 |
Hughes AR, Hanley TC, Schenck FR, Hays CG ( 2016). Genetic diversity of seagrass seeds influences seedling morphology and biomass. Ecology, 97, 3538-3546.
DOI URL |
36 |
Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M ( 2008). Ecological consequences of genetic diversity. Ecology Letters, 11, 609-623.
DOI URL |
37 |
Hughes AR, Stachowicz JJ ( 2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America, 101, 8998-9002.
DOI URL |
38 | Hughes AR, Stachowicz JJ ( 2011). Seagrass genotypic diversity increases disturbance response via complementarity and dominance. Journal of Ecology, 99, 445-453. |
39 | Husband BC, Sabara HA ( 2004). Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium(Onagraceae). New Phytologist, 161, 703-713. |
40 |
Huston MA ( 1997). Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449-460.
DOI URL |
41 | Jahnke M, Olsen JL, Procaccini G ( 2015 a). A meta-analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long-lived seagrass Posidonia oceanica. Molecular Ecology, 24, 2336-2348. |
42 |
Jahnke M, Pages JF, Alcoverro T, Lavery PS, McMahon KM, Procaccini G ( 2015 b). Should we sync? Seascape-level genetic and ecological factors determine seagrass flowering patterns. Journal of Ecology, 103, 1464-1474.
DOI URL |
43 |
Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS ( 2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. DOI: 10.1038/ncomms9159.
DOI URL |
44 | Johnson MTJ, Lajeunesse MJ, Agrawal AA ( 2006). Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. Ecology Letters, 9, 24-34. |
45 |
Jormalainen V, Danelli M, Gagnon K, Hillebrand H, Rothausler E, Salminen JP, Sjoroos J ( 2017). Genetic variation of a foundation rockweed species affects associated communities. Ecology, 98, 2940-2951.
DOI URL |
46 |
Jousset A, Schmid B, Scheu S, Eisenhauer N ( 2011). Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecology Letters, 14, 537-545.
DOI URL |
47 |
Kettenring KM, Mercer KL, Adams CR, Hines J ( 2014). Application of genetic diversity-ecosystem function research to ecological restoration. Journal of Applied Ecology, 51, 339-348.
DOI URL |
48 |
Lande R ( 1988). Genetics and demography in biological conservation. Science, 241, 1455-1460.
DOI URL |
49 |
Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE ( 2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936. DOI: 10.1038/ncomms6936.
DOI URL |
50 | Loreau M, Hector A ( 2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 413, 548-548. |
51 | Massa SI, Paulino CM, Serrao EA, Duarte CM, Arnaud-Haond S ( 2013). Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecology, 13, 1-12. |
52 | McArt SH, Thaler JS ( 2013). Plant genotypic diversity reduces the rate of consumer resource utilization. Proceedings of the Royal Society B-Biological Sciences, 280, 20130639. DOI: 10.1098/rspb.2013.0639 |
53 |
McKay JK, Christian CE, Harrison S, Rice KJ ( 2005). “How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, 13, 432-440.
DOI URL |
54 |
Pew J, Muir PH, Wang JL, Frasier TR ( 2015). Related: An R package for analysing pairwise relatedness from codominant molecular markers. Molecular Ecology Resources, 15, 557-561.
DOI URL |
55 |
Reusch TBH, Ehlers A, Hammerli A, Worm B ( 2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America, 102, 2826-2831.
DOI URL |
56 | Reynolds LK, Chan KM, Huynh E, Williams SL, Stachowicz JJ ( 2017). Plant genotype identity and diversity interact with mesograzer species diversity to influence detrital consumption in eelgrass meadows. Oikos, 127, 327-336. |
57 |
Reynolds LK, McGlathery KJ, Waycott M ( 2012). Genetic diversity enhances restoration success by augmenting ecosystem services. PLOS ONE, 7, e38397. DOI: 10.1371/journal.pone.0038397.
DOI URL |
58 |
Schweitzer JA, Bailey JK, Hart SC, Whitham TG ( 2005). Nonadditive effects of mixing cottonwood genotypes on litter decomposition and nutrient dynamics. Ecology, 86, 2834-2840.
DOI URL |
59 |
Semchenko M, Saar S, Lepik A ( 2017). Intraspecific genetic diversity modulates plant-soil feedback and nutrient cycling. New Phytologist, 216, 90-98.
DOI URL |
60 | Shen DW, Li YY, Chen XY ( 2007). Review of clonal diversity and its effects on ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 552-560. |
[ 沈栋伟, 李媛媛, 陈小勇 ( 2007). 植物克隆多样性与生态系统功能. 植物生态学报, 31, 552-560.] | |
61 | Shen JF, Ren HQ, Xin XJ, Xu B, Gao YB, Zhao NX ( 2015). Leymus chinensis genotypic diversity increases the response of populations to disturbance. Acta Ecologica Sinica, 35, 7682-7689. |
[ 申俊芳, 任慧琴, 辛晓静, 徐冰, 高玉葆, 赵念席 ( 2015). 羊草基因型多样性能增强种群对干扰的响应. 生态学报, 35, 7682-7689.] | |
62 | Shen JF, Xin XJ, Zhao NX, Gao YB ( 2016). Effects of genotypic diversity of Leymus chinensis population on soil macrofauna and microorganism community. Chinese Journal of Ecology, 35, 1226-1232. |
[ 申俊芳, 辛晓静, 赵念席, 高玉葆 ( 2016). 羊草基因型数目对地下动物及微生物群落的影响. 生态学杂志, 35, 1226-1232.] | |
63 |
Sjoqvist CO, Kremp A ( 2016). Genetic diversity affects ecological performance and stress response of marine diatom populations. The ISME Journal, 10, 2755-2766.
DOI URL |
64 |
Smithson JB, Lenné JM ( 1996). Varietal mixtures: A viable strategy for sustainable productivity in subsistence agriculture. Annals of Applied Biology, 128, 127-158.
DOI URL |
65 |
Souza L, Stuble KL, Genung MA, Classen AT ( 2017). Plant genotypic variation and intraspecific diversity trump soil nutrient availability to shape old-field structure and function. Functional Ecology, 31, 965-974.
DOI URL |
66 | Srivastava DS, Lawton JH ( 1998). Why more productive sites have more species: An experimental test of theory using tree-hole communities. The American Naturalist, 152, 510-529. |
67 | Stachowicz JJ, Kamel SJ, Hughes AR, Grosberg RK ( 2013). Genetic relatedness influences plant biomass accumulation in eelgrass (Zostera marina). The American Naturalist, 181, 715-724. |
68 |
Tack AJM, Johnson MTJ, Roslin T ( 2012). Sizing up community genetics: It’s a matter of scale. Oikos, 121, 481-488.
DOI URL |
69 |
Tack AJM, Ovaskainen O, Pulkkinen P, Roslin T ( 2010). Spatial location dominates over host plant genotype in structuring an herbivore community. Ecology, 91, 2660-2672.
DOI URL |
70 |
Tilman D, Isbell F, Cowles JM ( 2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
DOI URL |
71 |
Tilman D, Lehman CL, Thomson KT ( 1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
DOI URL |
72 | Tomimatsu H, Nakano K, Yamamoto N, Suyama Y ( 2014). Effects of genotypic diversity of Phragmites australis on primary productivity and water quality in an experimental wetland. Oecologia, 175, 163-172. |
73 |
Wang XY, Miao Y, Yu S, Chen XY, Schmid B ( 2014). Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes. Oecologia, 174, 993-1005.
DOI URL |
74 | Wang XY, Shen DW, Jiao J, Xu NN, Yu S, Zhou XF, Shi MM, Chen XY ( 2012). Genotypic diversity enhances invasive ability of Spartina alterniflora. Molecular Ecology, 21, 2542-2551. |
75 |
Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, Leroy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC ( 2006). A framework for community and ecosystem genetics: From genes to ecosystems. Nature Reviews Genetics, 7, 510-523.
DOI URL |
76 |
Whitlock R ( 2014). Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: A meta-analysis. Journal of Ecology, 102, 857-872.
DOI URL |
77 |
Wolfe MS ( 1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251-273.
DOI URL |
78 | Xu W, Jing X, Ma ZY, He JS ( 2016 a). A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84. |
[ 徐炜, 井新, 马志远, 贺金生 ( 2016 a). 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.] | |
79 | Xu W, Ma ZY, Jing X, He JS ( 2016 b). Biodiversity and ecosystem multifunctionality: Advances and perspectives. Biodiversity Science, 24, 55-71. |
[ 徐炜, 马志远, 井新, 贺金生 ( 2016 b). 生物多样性与生态系统多功能性:进展与展望. 生物多样性, 24, 55-71.] | |
80 |
Yang LX, Callaway RM, Atwater DZ ( 2017). Ecotypic diversity of a dominant grassland species resists exotic invasion. Biological Invasions, 19, 1483-1493.
DOI URL |
81 | Yang X, Shen JF, Zhao NX, Gao YB ( 2017). Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis. Chinese Journal of Plant Ecology, 41, 359-368. |
[ 杨雪, 申俊芳, 赵念席, 高玉葆 ( 2017). 不同基因型羊草数量性状的可塑性及遗传分化. 植物生态学报, 41, 359-368.] | |
82 | Zhang QG, Zhang DY ( 2002). Biodiversity and ecosystem functioning: Recent advances and trends. Biodiversity Science, 11, 351-363. |
[ 张全国, 张大勇 ( 2003). 生物多样性与生态系统功能: 进展与争论. 生物多样性, 11, 351-363.] |
[1] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[2] | WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(4): 479-490. |
[3] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[4] | CHEN Lin-Kang, ZHAO Ping, WANG Ding, XIANG Rui, LONG Guang-Qiang. Non-additive effect of mixed decomposition of maize and potato straw [J]. Chin J Plant Ecol, 2023, 47(12): 1728-1738. |
[5] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[6] | CHEN Tian-Yi, LOU An-Ru. Genetic diversity and genetic structure of the Betula platyphylla populations on the eastern side of the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(5): 561-568. |
[7] | WANG Yi, SUN Jian, YE Chong-Chong, ZENG Tao. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 434-443. |
[8] | PAN Quan, ZHENG Hua, WANG Zhi-Heng, WEN Zhi, YANG Yan-Zheng. Effects of plant functional traits on ecosystem services: a review [J]. Chin J Plant Ecol, 2021, 45(10): 1140-1153. |
[9] | LI Hai-Dong, WU Xin-Wei, XIAO Zhi-Shu. Assembly, ecosystem functions, and stability in species interaction networks [J]. Chin J Plant Ecol, 2021, 45(10): 1049-1063. |
[10] | JING Xin, HE Jin-Sheng. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: literature overview and research advances [J]. Chin J Plant Ecol, 2021, 45(10): 1094-1111. |
[11] | LI Song-Song, WANG Ning-Xin, ZHENG Wei, ZHU Ya-Qiong, WANG Xiang, MA Jun, ZHU Jin-Zhong. Comparison of transgressive overyielding effect and plant diversity effects of annual and perennial legume-grass mixtures [J]. Chin J Plant Ecol, 2021, 45(1): 23-37. |
[12] | ZHANG Yang-Jian, ZHU Jun-Tao, SHEN Ruo-Nan, WANG Li. Research progress on the effects of grazing on grassland ecosystem [J]. Chin J Plant Ecol, 2020, 44(5): 553-564. |
[13] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[14] | XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741. |
[15] | QIN Hao, ZHANG Yin-Bo, DONG Gang, ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn