Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (1): 30-38.DOI: 10.3724/SP.J.1258.2012.00030
• Research Articles • Previous Articles Next Articles
JIANG Jun, ZHANG Chun-Yu, ZHAO Xiu-Hai*()
Received:
2011-04-28
Accepted:
2011-11-07
Online:
2012-04-28
Published:
2012-01-05
Contact:
ZHAO Xiu-Hai
JIANG Jun, ZHANG Chun-Yu, ZHAO Xiu-Hai. Plant species-area relationship in a 42-hm2 research plot of coniferous and board-leaved mixed forest in Jiaohe, Jilin Province, China[J]. Chin J Plant Ecol, 2012, 36(1): 30-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00030
分布区类型 Distribution area type | 属数 No. of genera | 比率 Rate (%) |
---|---|---|
1 世界分布 Cosmopolitan distribution | 1 | 3. 57 |
2 泛热带分布 Pantropic distribution | 1 | 3. 57 |
8 北温带分布 North temperate distribution | 20 | 71. 40 |
10 旧世界温带分布 Old world temperate distribution | 1 | 3. 57 |
14 东亚分布 East Asia distribution | 4 | 14. 29 |
14-2 中国-日本分布 Sino-Japan distribution | 1 | 3. 57 |
合计 Total | 28 | 100. 00 |
Table 1 Areal-types of woody plant in a 42-hm2sample plot
分布区类型 Distribution area type | 属数 No. of genera | 比率 Rate (%) |
---|---|---|
1 世界分布 Cosmopolitan distribution | 1 | 3. 57 |
2 泛热带分布 Pantropic distribution | 1 | 3. 57 |
8 北温带分布 North temperate distribution | 20 | 71. 40 |
10 旧世界温带分布 Old world temperate distribution | 1 | 3. 57 |
14 东亚分布 East Asia distribution | 4 | 14. 29 |
14-2 中国-日本分布 Sino-Japan distribution | 1 | 3. 57 |
合计 Total | 28 | 100. 00 |
树种 Tree species | 多度 Abundance | 胸高断面积 Basal area (m2?hm-2) | 占总胸高断面积的比率 Percentage of total basal area (%) | 每公顷株数 Individuals per hectare | 最大胸径 Maximum DBH (cm) |
---|---|---|---|---|---|
紫椴 Tilia amurensis | 2 765 | 3. 29 | 10. 31 | 66 | 82.3 |
胡桃楸 Juglans mandshurica | 2 113 | 3. 65 | 11. 43 | 50 | 82.6 |
色木槭 Acer mono | 9 604 | 5. 21 | 16. 32 | 229 | 90.0 |
红松 Pinus koraiensis | 2 546 | 4. 28 | 13. 41 | 60 | 81.3 |
水曲柳 Fraxinus mandshurica | 2 155 | 3. 62 | 11. 34 | 51 | 86.6 |
其他 Other | 35 469 | 11. 86 | 37. 17 | 844 | 108.1 |
总计 Total | 54 652 | 31. 91 | 100 | 1 301 |
Table 2 Composition and structure of five main species in a 42-hm2sample plot
树种 Tree species | 多度 Abundance | 胸高断面积 Basal area (m2?hm-2) | 占总胸高断面积的比率 Percentage of total basal area (%) | 每公顷株数 Individuals per hectare | 最大胸径 Maximum DBH (cm) |
---|---|---|---|---|---|
紫椴 Tilia amurensis | 2 765 | 3. 29 | 10. 31 | 66 | 82.3 |
胡桃楸 Juglans mandshurica | 2 113 | 3. 65 | 11. 43 | 50 | 82.6 |
色木槭 Acer mono | 9 604 | 5. 21 | 16. 32 | 229 | 90.0 |
红松 Pinus koraiensis | 2 546 | 4. 28 | 13. 41 | 60 | 81.3 |
水曲柳 Fraxinus mandshurica | 2 155 | 3. 62 | 11. 34 | 51 | 86.6 |
其他 Other | 35 469 | 11. 86 | 37. 17 | 844 | 108.1 |
总计 Total | 54 652 | 31. 91 | 100 | 1 301 |
Fig. 1 Size-class distribution of five main species in plot. A, Tilia amurensis. B, Juglans mandshurica. C, Acer mono. D, Pinus koraiensis. E, Fraxinus mandshurica. F, Total.
取样方法 Sampling design | 种-面积模型 Species-area model | 模型参数 Model parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | Z | A | AIC | ||||||||
巢式取样 Nest sample design | 对数模型 Logarithmic | -22. 16** | 5. 46*** | - | 129. 97 | ||||||
幂函数模型 Power | 3. 11*** | 0. 22*** | - | 95. 91 | |||||||
逻辑斯蒂克模型 Logistic | 1. 75*** | 0. 32*** | 0. 02*** | 84. 67 | |||||||
随机取样 Random sample design | 对数模型 Logarithmic | -20. 43*** | 5. 52*** | - | 89. 11 | ||||||
幂函数模型 Power | 4. 56*** | 0. 19*** | - | 113. 81 | |||||||
逻辑斯蒂克模型 Logistic | 1. 45*** | 0. 39*** | 0. 02*** | 71. 21 |
Table 3 Evaluation of the goodness-of-fit of three species-area models using nest sample design and random sample design
取样方法 Sampling design | 种-面积模型 Species-area model | 模型参数 Model parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | Z | A | AIC | ||||||||
巢式取样 Nest sample design | 对数模型 Logarithmic | -22. 16** | 5. 46*** | - | 129. 97 | ||||||
幂函数模型 Power | 3. 11*** | 0. 22*** | - | 95. 91 | |||||||
逻辑斯蒂克模型 Logistic | 1. 75*** | 0. 32*** | 0. 02*** | 84. 67 | |||||||
随机取样 Random sample design | 对数模型 Logarithmic | -20. 43*** | 5. 52*** | - | 89. 11 | ||||||
幂函数模型 Power | 4. 56*** | 0. 19*** | - | 113. 81 | |||||||
逻辑斯蒂克模型 Logistic | 1. 45*** | 0. 39*** | 0. 02*** | 71. 21 |
Fig. 3 Three species-area curves for random sample design in a 42-hm2 plot. Ln (area of sample) represents the natural logarithm form of sampling area.
取样方法 Sampling design | 种-面积模型 Species-area model | AIC | ||
---|---|---|---|---|
10 hm2 | 25 hm2 | 42 hm2 | ||
巢式取样 Nest sample design | 对数模型 Logarithmic | 129. 91 | 150. 61 | 129. 97 |
幂函数模型 Power | 81. 11 | 97. 61 | 95. 91 | |
逻辑斯蒂克模型 Logistic | 82. 63 | 94. 06 | 84. 67 | |
随机取样 Random sample design | 对数模型 Logarithmic | 75. 31 | 126. 98 | 89. 11 |
幂函数模型 Power | 62. 57 | 94. 42 | 113. 81 | |
逻辑斯蒂克模型 Logistic | 94. 81 | 97. 42 | 71. 21 |
Table 4 Evaluation of the goodness-of-fit of three species-area models at varying size
取样方法 Sampling design | 种-面积模型 Species-area model | AIC | ||
---|---|---|---|---|
10 hm2 | 25 hm2 | 42 hm2 | ||
巢式取样 Nest sample design | 对数模型 Logarithmic | 129. 91 | 150. 61 | 129. 97 |
幂函数模型 Power | 81. 11 | 97. 61 | 95. 91 | |
逻辑斯蒂克模型 Logistic | 82. 63 | 94. 06 | 84. 67 | |
随机取样 Random sample design | 对数模型 Logarithmic | 75. 31 | 126. 98 | 89. 11 |
幂函数模型 Power | 62. 57 | 94. 42 | 113. 81 | |
逻辑斯蒂克模型 Logistic | 94. 81 | 97. 42 | 71. 21 |
[1] | Anderson DR, Burnham KP (1994). AIC model selection in over dispersed capture-recapture data. Ecology, 75,1780-1793. |
[2] | Archibald EEA (1949). The specific character of plant communities. II. A quantitative approach. Journal of Ecology, 37,274-288. |
[3] | Arrhenius O (1921). Species and area. Journal of Ecology, 9,95-99. |
[4] | Bartha S, Ittzés P (2001). Local richness-species pool ratio: a consequence of the species-area relationship. Folia Geobotanica, 36,9-23. |
[5] | Carey S, Harte J, del Moral R (2006). Effect of community assembly and primary succession on the species-area relationship in disturbed ecosystems. Ecography, 29,866-872. |
[6] | Coleman DB (1981). On random placement and species-area relations. Mathematical Biosciences, 54,191-215. |
[7] | Connor EF, McCoy ED (1979). The statistics and biology of the species-area relationship. The American Naturalist, 113,791-833. |
[8] | Fattorini S (2007). To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species-area relationship is used to locate hotspots. Biodiversity and Conservation, 16,2531-2538. |
[9] | Fisher RA, Corbet AS, Williams CB (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12,42-58. |
[10] | Fridley JD, Peet RK, Wentworth TR, White PS (2005). Connecting fine and broad scale species-area relationships of southeastern U.S. flora. Ecology, 86,1172-1177. |
[11] | Gleason HA (1922). On the relation between species and area. Ecology, 3,158-162. |
[12] | Gleason HA (1925). Species and area. Ecology, 6,66-74. |
[13] | Hao ZQ (郝占庆), Li BH (李步杭), Zhang J (张健), Wang XG (王绪高), Ye J (叶吉), Yao XL (姚晓琳) (2008). Broad-leaved Korean pine ( Pinus koraiensis) mixed forest plot in Changbaishan (CBS) of China: community composition and structure. Journal of Plant Ecology (Chinese Version)(植物生态学报), 32,238-250. (in Chinese with English abstract) |
[14] |
Harte J, Smith AB, Storch D (2009). Biodiversity scales from plots to biomes with a universal species-area curve. Ecology Letters, 12,789-797.
DOI URL PMID |
[15] | He FL, Legendre P (1996). On species-area relations. The American Naturalist, 148,719-737. |
[16] | He FL, Legendre P (2002). Species diversity patterns derived from species-area models. Ecology, 83,1185-1198. |
[17] | He FL (何芳良), Hu XS (胡新生) (2007). Neutral theory and diversity patterns. In: Wu JG (邬建国), Ge JP (葛剑平), Han XG (韩兴国), Yu ZL (于振良), Zhang DY (张大勇) eds. Lectures in Modern Ecology (Ⅲ): Advances and Key Topics (现代生态学讲座Ⅲ: 学科进展与热点论题). Higher Education Press, Beijing. 30. (in Chinese) |
[18] | Hoylet M (2004). Causes of the species-area relationship by trophic level in a field-based microecosystem. Proceedings of the Royal Society B: Biological Series, 271,1159-1164. |
[19] | Inouye RS (1998). Species-area curves and estimates of total species richness in an old-field chronosequence. Plant Ecology, 137,31-40. |
[20] |
Kilburn PD (1963). Exponential values for the species-area relation. Science, 141,1276.
URL PMID |
[21] | Lomolino MV (2001). The species-area relationship: new challenges for an old pattern. Progress in Physical Geography, 25,1-21. |
[22] | MacArthur RH, Wilson EO (1967). Island Biogeography. Princeton University Press, Princeton. |
[23] |
Malcolm JR, Liu CR, Neilson RP, Hansen L, Hannah L (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20,538-548.
DOI URL PMID |
[24] | Palmer MW, White PS (1994). Scale dependence and the species-area relationship. The American Naturalist, 144,717-740. |
[25] | Pastor J, Downing A, Erickson HE (1996). Species-area curves and diversity-productivity relationships in beaver meadows of Voyageurs National Park, Minnesota, USA. Oikos, 77,399-406. |
[26] |
Pimm SL, Raven P (2000). Extinction in number. Nature, 403,843-845.
DOI URL PMID |
[27] | Scheiner SM (2003). Six types of species-area curves. Global Ecology and Biogeography, 12,441-447. |
[28] | Scheiner SM (2007). Evaluation of species-area functions using Sonoran Desert plant data: not all species-area curves are power functions. Oikos, 116,1930-1940. |
[29] | Tjorve E (2003). Shapes and functions of species-area curves: a review of possible models. Journal of Biogeography, 30,827-835. |
[30] | Tjorve E, Kunin WE, Polce C, Tjorve KMC (2008). Species-area relationship: separating the effects of species abundance and spatial distribution. Journal of Ecology, 96,1141-1151. |
[31] | Ugland KI, Gray JS, Ellingsen KE (2003). The species- accumulation curve and estimation of species richness. Journal of Animal Ecology, 72,888-897. |
[32] | Ulrich W, Buszko J (2007). Sampling design and the shape of species-area curves on the regional scale. Acta Oecolo- gica, 31,54-59. |
[33] | Weiher E (1999). The combined effects of scale and productivity on species richness. Journal of Ecology, 87,1005-1011. |
[34] | Wu ZY (吴征镒), Zhou ZK (周浙昆), Li DZ (李德铢), Peng H (彭华), Sun H (孙航) (2003). The areal-types of the world families of seed plants. Acta Botanica Yunnanica (云南植物研究), 25,245-257. (in Chinese with English abstract) |
[35] | Zhang CY (张春雨), Zhao XH (赵秀海), Zhao YZ (赵亚洲) (2009). Community structure in different successional stages in north temperate forests of Changbai Mountains, China. Chinese Journal of Plant Ecology (植物生态学报), 33,1090-1100. (in Chinese with English abstract) |
[1] | CAO Zhen, LIU Yong-Ying, SONG Shi-Kai, ZHANG Li-Na, GAO De. Drivers of the small-island effect in moss assemblages on terrestrial habitat islands: a case study in mountaintops of the Middle Taihang Mountains, China [J]. Chin J Plant Ecol, 2023, 47(1): 65-76. |
[2] | CHI Xiu-Lian, TANG Zhi-Yao. Effects of area, temperature and geometric constraints on elevational patterns of species richness: a case study in the Mountain Taibai, Qinling Mountains, China [J]. Chin J Plant Ecol, 2011, 35(4): 362-370. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn