Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (1): 65-76.DOI: 10.17521/cjpe.2022.0272
• Research Articles • Previous Articles Next Articles
CAO Zhen1, LIU Yong-Ying2, SONG Shi-Kai3, ZHANG Li-Na4, GAO De3,*()
Received:
2022-06-28
Accepted:
2022-08-22
Online:
2023-01-20
Published:
2022-09-05
Contact:
*GAO De,ORCID:0000-0002-7055-5285(de.gao@hebtu.edu.cn)
Supported by:
CAO Zhen, LIU Yong-Ying, SONG Shi-Kai, ZHANG Li-Na, GAO De. Drivers of the small-island effect in moss assemblages on terrestrial habitat islands: a case study in mountaintops of the Middle Taihang Mountains, China[J]. Chin J Plant Ecol, 2023, 47(1): 65-76.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0272
序号 No. | 地理坐标 Centroid coordinate | 面积 Area (km2) | 高度 Height (m) | Bio7 (℃) | NPP (g·m-2) | 物种丰富度 Species richness | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
所有藓 All mosses | 丛藓科 Pottiaceae | 真藓科 Bryaceae | 紫萼藓科 Grimmiaceae | 青藓科 Brachythe- ciaceae | 绢藓科 Entodontaceae | 灰藓科 Hypnaceae | ||||||
1 | 39.04° N, 113.58° E | 801.58 | 1 142 | 40.81 | 94.94 | 131 | 38 | 11 | 4 | 26 | 10 | 6 |
2 | 39.22° N, 113.76° E | 1.34 | 120 | 42.53 | 1 443.01 | 16 | 7 | 3 | 0 | 2 | 0 | 2 |
3 | 38.81° N, 113.50° E | 17.88 | 306 | 40.66 | 867.33 | 54 | 20 | 3 | 3 | 9 | 5 | 3 |
4 | 38.80° N, 113.57°E | 0.41 | 82 | 40.59 | 3 432.38 | 8 | 2 | 1 | 1 | 2 | 1 | 0 |
5 | 38.81° N, 113.59° E | 10.66 | 250 | 40.52 | 1 155.76 | 40 | 11 | 3 | 4 | 11 | 6 | 0 |
6 | 38.70° N, 113.66° E | 1.21 | 82 | 40.59 | 1 908.49 | 21 | 5 | 2 | 0 | 4 | 2 | 1 |
7 | 38.72° N, 113.64° E | 0.20 | 54 | 40.75 | 6 041.27 | 4 | 1 | 1 | 1 | 0 | 0 | 0 |
8 | 38.73° N, 113.63° E | 0.10 | 48 | 40.95 | 9 896.47 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 38.65° N, 113.66° E | 0.23 | 24 | 40.09 | 8 341.61 | 4 | 0 | 0 | 0 | 1 | 1 | 0 |
10 | 38.65° N, 113.62° E | 3.40 | 168 | 40.43 | 1 329.31 | 41 | 8 | 2 | 2 | 6 | 4 | 3 |
11 | 38.63° N, 113.60° E | 0.36 | 66 | 40.35 | 3 291.90 | 8 | 0 | 2 | 1 | 1 | 0 | 1 |
12 | 38.61° N, 113.57° E | 0.15 | 49 | 40.50 | 8 675.48 | 3 | 0 | 0 | 0 | 0 | 1 | 1 |
13 | 38.62° N, 113.52° E | 0.80 | 82 | 40.59 | 1 599.43 | 21 | 7 | 2 | 1 | 3 | 1 | 0 |
14 | 38.62° N, 113.50° E | 0.43 | 127 | 40.45 | 4 444.29 | 12 | 3 | 2 | 1 | 2 | 1 | 0 |
15 | 38.58° N, 113.58° E | 0.06 | 40 | 40.00 | 7 605.66 | 2 | 1 | 1 | 1 | 0 | 0 | 0 |
16 | 38.99° N, 113.24° E | 169.19 | 672 | 41.35 | 97.15 | 98 | 22 | 6 | 5 | 20 | 8 | 4 |
17 | 38.87° N, 113.15° E | 17.85 | 305 | 41.22 | 336.98 | 56 | 13 | 3 | 3 | 13 | 6 | 4 |
18 | 38.93° N, 113.15° E | 2.55 | 209 | 41.40 | 1 281.10 | 25 | 11 | 3 | 1 | 3 | 3 | 1 |
19 | 38.97° N, 113.11° E | 2.13 | 215 | 41.30 | 2 323.03 | 32 | 15 | 4 | 1 | 4 | 3 | 2 |
Table 1 Introduction to the 19 studied mountaintops of the Middle Taihang Mountains
序号 No. | 地理坐标 Centroid coordinate | 面积 Area (km2) | 高度 Height (m) | Bio7 (℃) | NPP (g·m-2) | 物种丰富度 Species richness | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
所有藓 All mosses | 丛藓科 Pottiaceae | 真藓科 Bryaceae | 紫萼藓科 Grimmiaceae | 青藓科 Brachythe- ciaceae | 绢藓科 Entodontaceae | 灰藓科 Hypnaceae | ||||||
1 | 39.04° N, 113.58° E | 801.58 | 1 142 | 40.81 | 94.94 | 131 | 38 | 11 | 4 | 26 | 10 | 6 |
2 | 39.22° N, 113.76° E | 1.34 | 120 | 42.53 | 1 443.01 | 16 | 7 | 3 | 0 | 2 | 0 | 2 |
3 | 38.81° N, 113.50° E | 17.88 | 306 | 40.66 | 867.33 | 54 | 20 | 3 | 3 | 9 | 5 | 3 |
4 | 38.80° N, 113.57°E | 0.41 | 82 | 40.59 | 3 432.38 | 8 | 2 | 1 | 1 | 2 | 1 | 0 |
5 | 38.81° N, 113.59° E | 10.66 | 250 | 40.52 | 1 155.76 | 40 | 11 | 3 | 4 | 11 | 6 | 0 |
6 | 38.70° N, 113.66° E | 1.21 | 82 | 40.59 | 1 908.49 | 21 | 5 | 2 | 0 | 4 | 2 | 1 |
7 | 38.72° N, 113.64° E | 0.20 | 54 | 40.75 | 6 041.27 | 4 | 1 | 1 | 1 | 0 | 0 | 0 |
8 | 38.73° N, 113.63° E | 0.10 | 48 | 40.95 | 9 896.47 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 38.65° N, 113.66° E | 0.23 | 24 | 40.09 | 8 341.61 | 4 | 0 | 0 | 0 | 1 | 1 | 0 |
10 | 38.65° N, 113.62° E | 3.40 | 168 | 40.43 | 1 329.31 | 41 | 8 | 2 | 2 | 6 | 4 | 3 |
11 | 38.63° N, 113.60° E | 0.36 | 66 | 40.35 | 3 291.90 | 8 | 0 | 2 | 1 | 1 | 0 | 1 |
12 | 38.61° N, 113.57° E | 0.15 | 49 | 40.50 | 8 675.48 | 3 | 0 | 0 | 0 | 0 | 1 | 1 |
13 | 38.62° N, 113.52° E | 0.80 | 82 | 40.59 | 1 599.43 | 21 | 7 | 2 | 1 | 3 | 1 | 0 |
14 | 38.62° N, 113.50° E | 0.43 | 127 | 40.45 | 4 444.29 | 12 | 3 | 2 | 1 | 2 | 1 | 0 |
15 | 38.58° N, 113.58° E | 0.06 | 40 | 40.00 | 7 605.66 | 2 | 1 | 1 | 1 | 0 | 0 | 0 |
16 | 38.99° N, 113.24° E | 169.19 | 672 | 41.35 | 97.15 | 98 | 22 | 6 | 5 | 20 | 8 | 4 |
17 | 38.87° N, 113.15° E | 17.85 | 305 | 41.22 | 336.98 | 56 | 13 | 3 | 3 | 13 | 6 | 4 |
18 | 38.93° N, 113.15° E | 2.55 | 209 | 41.40 | 1 281.10 | 25 | 11 | 3 | 1 | 3 | 3 | 1 |
19 | 38.97° N, 113.11° E | 2.13 | 215 | 41.30 | 2 323.03 | 32 | 15 | 4 | 1 | 4 | 3 | 2 |
模型 Model | 方程式 Equation |
---|---|
1 | S = c + (log A ≤ T) × z1 × log A + (log A > T) × (z1 × T + z2 × (log A ? T)) |
2 | S = c + (log A ≤ T) (z1 × log A + (z2 ? z1) × T) + (log A > T) × z2 × log A |
3 | S = c + (log A > T) × z1 × (log A ? T) |
4 | S = c + (log A ≤ T) × z1 × T + (log A > T) × z1 × log A |
5 | S = c + z1 × log A |
6 | S = c |
Table 2 Equations of the six models of for the small-island effect detection
模型 Model | 方程式 Equation |
---|---|
1 | S = c + (log A ≤ T) × z1 × log A + (log A > T) × (z1 × T + z2 × (log A ? T)) |
2 | S = c + (log A ≤ T) (z1 × log A + (z2 ? z1) × T) + (log A > T) × z2 × log A |
3 | S = c + (log A > T) × z1 × (log A ? T) |
4 | S = c + (log A ≤ T) × z1 × T + (log A > T) × z1 × log A |
5 | S = c + z1 × log A |
6 | S = c |
Fig. 2 Schematic illustration of the derivation of each segment in each piecewise model used for the detection of the small-island effect in moss assemblages in mountaintops of the Middle Taihang Mountains. Red line signifies the segment is obtained by regression, green line signifies the segment is obtained by slope iteration and black line signifies the segment is obtained by direct inheritance. Models see Table 2.
类群 Group | 模型 Model | 参数 Parameter | 模型比较 Model comparison | |||||
---|---|---|---|---|---|---|---|---|
c | z1 | z2 | T | K | AICc | ?AICc | ||
所有藓 All mosses | 1 | 20.454 | 20.794 | 46.911 | 0.993 | 5 | 121.141 | 0.000 |
2 | -5.501 | 20.788 | 46.918 | 0.993 | 5 | 121.141 | 0.000 | |
3 | 5.375 | 37.009 | - | -0.256 | 4 | 131.054 | 9.913 | |
4 | 14.847 | 37.007 | - | -0.256 | 4 | 131.054 | 9.913 | |
5 | 23.240 | 30.572 | - | - | 3 | 142.795 | 21.654 | |
6 | 30.421 | - | - | - | 2 | 192.487 | 71.346 | |
丛藓科 Pottiaceae | 1 | 6.381 | 7.149 | 26.343 | 2.338 | 5 | 103.098 | 0.000 |
2 | -30.776 | 7.023 | 23.684 | 2.228 | 5 | 103.140 | 0.042 | |
3 | 0.400 | 9.336 | - | -0.565 | 4 | 104.286 | 1.188 | |
4 | 5.671 | 9.338 | - | -0.565 | 4 | 104.286 | 1.188 | |
5 | 6.638 | 8.486 | - | - | 3 | 105.326 | 2.228 | |
6 | 8.632 | - | - | - | 2 | 144.723 | 41.625 | |
真藓科 Bryaceae | 1 | 1.933 | 1.277 | 7.404 | 2.029 | 5 | 57.149 | 3.556 |
2 | -10.492 | 1.278 | 7.401 | 2.029 | 5 | 53.593 | 0.000 | |
3 | 0.333 | 2.159 | - | -0.766 | 4 | 67.572 | 13.979 | |
4 | 1.986 | 2.160 | - | -0.765 | 4 | 67.572 | 13.979 | |
5 | 2.097 | 2.049 | - | - | 3 | 65.763 | 12.170 | |
6 | 2.578 | - | - | - | 2 | 102.796 | 49.203 | |
紫萼藓科 Grimmiaceae | 1 | 0.655 | 0.099 | 1.697 | 0.083 | 5 | 54.778 | 3.788 |
2 | 0.646 | 0.235 | 1.630 | 0.082 | 5 | 54.353 | 3.363 | |
3 | 0.667 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
4 | 0.647 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
5 | 1.243 | 1.206 | - | - | 3 | 51.573 | 0.583 | |
6 | 1.526 | - | - | - | 2 | 74.185 | 23.195 | |
青藓科 Brachytheciaceae | 1 | 2.815 | 2.876 | 8.756 | 0.383 | 5 | 66.383 | 0.000 |
2 | 0.559 | 2.873 | 8.757 | 0.383 | 5 | 66.383 | 0.000 | |
3 | 1.000 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
4 | 1.332 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
5 | 4.145 | 6.329 | - | - | 3 | 87.961 | 21.578 | |
6 | 5.632 | - | - | - | 2 | 132.999 | 66.616 | |
绢藓科 Entodontaceae | 1 | 1.111 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 |
2 | 1.589 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 | |
3 | 0.400 | 2.959 | - | -0.444 | 4 | 50.915 | 0.002 | |
4 | 1.693 | 2.973 | - | -0.444 | 4 | 50.913 | 0.000 | |
5 | 2.122 | 2.619 | - | - | 3 | 54.422 | 3.509 | |
6 | 2.737 | - | - | - | 2 | 99.466 | 48.553 | |
灰藓科 Hypnaceae | 1 | 0.386 | 0.194 | 1.599 | -0.366 | 5 | 61.641 | 3.700 |
2 | 0.908 | 0.213 | 1.594 | -0.366 | 5 | 61.641 | 3.700 | |
3 | 0.286 | 1.614 | - | -0.367 | 4 | 57.941 | 0.000 | |
4 | 0.852 | 1.630 | - | -0.367 | 4 | 57.944 | 0.003 | |
5 | 1.146 | 1.395 | - | - | 3 | 61.576 | 3.635 | |
6 | 1.474 | - | - | - | 2 | 86.151 | 28.210 |
Table 3 Modeling results of species-area relationships of mosses in mountaintops of the Middle Taihang Mountains
类群 Group | 模型 Model | 参数 Parameter | 模型比较 Model comparison | |||||
---|---|---|---|---|---|---|---|---|
c | z1 | z2 | T | K | AICc | ?AICc | ||
所有藓 All mosses | 1 | 20.454 | 20.794 | 46.911 | 0.993 | 5 | 121.141 | 0.000 |
2 | -5.501 | 20.788 | 46.918 | 0.993 | 5 | 121.141 | 0.000 | |
3 | 5.375 | 37.009 | - | -0.256 | 4 | 131.054 | 9.913 | |
4 | 14.847 | 37.007 | - | -0.256 | 4 | 131.054 | 9.913 | |
5 | 23.240 | 30.572 | - | - | 3 | 142.795 | 21.654 | |
6 | 30.421 | - | - | - | 2 | 192.487 | 71.346 | |
丛藓科 Pottiaceae | 1 | 6.381 | 7.149 | 26.343 | 2.338 | 5 | 103.098 | 0.000 |
2 | -30.776 | 7.023 | 23.684 | 2.228 | 5 | 103.140 | 0.042 | |
3 | 0.400 | 9.336 | - | -0.565 | 4 | 104.286 | 1.188 | |
4 | 5.671 | 9.338 | - | -0.565 | 4 | 104.286 | 1.188 | |
5 | 6.638 | 8.486 | - | - | 3 | 105.326 | 2.228 | |
6 | 8.632 | - | - | - | 2 | 144.723 | 41.625 | |
真藓科 Bryaceae | 1 | 1.933 | 1.277 | 7.404 | 2.029 | 5 | 57.149 | 3.556 |
2 | -10.492 | 1.278 | 7.401 | 2.029 | 5 | 53.593 | 0.000 | |
3 | 0.333 | 2.159 | - | -0.766 | 4 | 67.572 | 13.979 | |
4 | 1.986 | 2.160 | - | -0.765 | 4 | 67.572 | 13.979 | |
5 | 2.097 | 2.049 | - | - | 3 | 65.763 | 12.170 | |
6 | 2.578 | - | - | - | 2 | 102.796 | 49.203 | |
紫萼藓科 Grimmiaceae | 1 | 0.655 | 0.099 | 1.697 | 0.083 | 5 | 54.778 | 3.788 |
2 | 0.646 | 0.235 | 1.630 | 0.082 | 5 | 54.353 | 3.363 | |
3 | 0.667 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
4 | 0.647 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
5 | 1.243 | 1.206 | - | - | 3 | 51.573 | 0.583 | |
6 | 1.526 | - | - | - | 2 | 74.185 | 23.195 | |
青藓科 Brachytheciaceae | 1 | 2.815 | 2.876 | 8.756 | 0.383 | 5 | 66.383 | 0.000 |
2 | 0.559 | 2.873 | 8.757 | 0.383 | 5 | 66.383 | 0.000 | |
3 | 1.000 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
4 | 1.332 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
5 | 4.145 | 6.329 | - | - | 3 | 87.961 | 21.578 | |
6 | 5.632 | - | - | - | 2 | 132.999 | 66.616 | |
绢藓科 Entodontaceae | 1 | 1.111 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 |
2 | 1.589 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 | |
3 | 0.400 | 2.959 | - | -0.444 | 4 | 50.915 | 0.002 | |
4 | 1.693 | 2.973 | - | -0.444 | 4 | 50.913 | 0.000 | |
5 | 2.122 | 2.619 | - | - | 3 | 54.422 | 3.509 | |
6 | 2.737 | - | - | - | 2 | 99.466 | 48.553 | |
灰藓科 Hypnaceae | 1 | 0.386 | 0.194 | 1.599 | -0.366 | 5 | 61.641 | 3.700 |
2 | 0.908 | 0.213 | 1.594 | -0.366 | 5 | 61.641 | 3.700 | |
3 | 0.286 | 1.614 | - | -0.367 | 4 | 57.941 | 0.000 | |
4 | 0.852 | 1.630 | - | -0.367 | 4 | 57.944 | 0.003 | |
5 | 1.146 | 1.395 | - | - | 3 | 61.576 | 3.635 | |
6 | 1.474 | - | - | - | 2 | 86.151 | 28.210 |
Fig. 4 Contribution trend of island height (h), annual temperature range (Bio7) and net primary productivity per unit area (NPP) to moss species richness variance.
[1] |
Anderson WB, Wait DA (2001). Subsidized Island Biogeography Hypothesis: another new twist on an old theory. Ecology Letters, 4, 289-291.
DOI URL |
[2] |
Boyle WA (2008). Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia, 155, 397-403.
DOI PMID |
[3] |
Boyle WA, Norris DR, Guglielmo CG (2010). Storms drive altitudinal migration in a tropical bird. Proceedings of the Royal Society B: Biological Sciences, 277, 2511-2519.
DOI URL |
[4] |
Brown JH (1971). Mammals on mountaintops: nonequilibrium insular biogeography. The American Naturalist, 105, 467-478.
DOI URL |
[5] | Burnham KP, Anderson DR (2002). Model Selection and Multimodel Inference: a Practical Information-theoretic Approach. Springer, New York. |
[6] | Chaves-Campos J (2004). Elevational movements of large frugivorous birds and temporal variation in abundance of fruits along an elevational gradient. Ornitologia Neotropical, 15, 433-445. |
[7] |
Chen CW, Yang XR, Tan XW, Wang YP (2020). The role of habitat diversity in generating the small-island effect. Ecography, 43, 1241-1249.
DOI URL |
[8] | Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. |
[9] |
Crist TO, Veech JA (2006). Additive partitioning of rarefaction curves and species-area relationships: unifying alpha-, beta- and gamma-diversity with sample size and habitat area. Ecology Letters, 9, 923-932.
PMID |
[10] |
Dengler J (2010). Robust methods for detecting a small island effect. Diversity and Distributions, 16, 256-266.
DOI URL |
[11] |
Ficetola GF, Denoёl M (2009). Ecological thresholds: an assessment of methods to identify abrupt changes in species- habitat relationships. Ecography, 32, 1075-1084.
DOI URL |
[12] |
Fleishman E, Ray C, Sjogren-Gulve P, Boggs CL, Murphy DD (2002). Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conservation Biology, 16, 706-716.
DOI URL |
[13] |
Francisco-Ramos V, Arias-González JE (2013). Additive partitioning of coral reef fish diversity across hierarchical spatial scales throughout the Caribbean. PLoS ONE, 8, e78761. DOI: 10.1371/journal.pone.0078761.
DOI |
[14] |
Gao D, Cao Z, Xu P, Perry G (2019). On piecewise models and species-area patterns. Ecology and Evolution, 9, 8351-8361.
DOI |
[15] |
Gao D, Fu LQ, Sun JX, Li Y, Cao Z, Liu YY, Xu P, Zhao JC (2021). The mid-domain effect and habitat complexity applied to elevational gradients: moss species richness in a temperate semihumid monsoon climate mountain of China. Ecology and Evolution, 11, 7448-7460.
DOI PMID |
[16] |
Gao D, Perry G (2016a). Detecting the small island effect and nestedness of herpetofauna of the West Indies. Ecology and Evolution, 6, 5390-5403.
DOI URL |
[17] |
Gao D, Perry G (2016b). Species-area relationships and additive partitioning of diversity of native and nonnative herpetofauna of the West Indies. Ecology and Evolution, 6, 7742-7762.
DOI URL |
[18] |
Gao D, Wang YP (2022). A global synthesis of the small-island effect in amphibians and reptiles. Ecography, 2022, e05957. DOI: 10.1111/ecog.05957.
DOI |
[19] |
Gilpin ME, Diamond JM (1976). Calculation of immigration and extinction curves from the species-area-distance relation. Proceedings of the National Academy of Sciences of the United States of America, 73, 4130-4134.
PMID |
[20] |
He XL, He KS, Hyvönen J (2016). Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49-60.
DOI URL |
[21] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
DOI URL |
[22] | Jarvis A, Reuter HI, Nelson A, Guevara E (2008). Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT).[2022-06-01]http://srtm.csi.cgiar.org. |
[23] |
Jensen DA, Ma KP, Svenning JC (2020). Steep topography buffers threatened gymnosperm species against anthropogenic pressures in China. Ecology and Evolution, 10, 1838-1855.
DOI PMID |
[24] |
Kimura MT (2021). Altitudinal migration of insects. Entomological Science, 24, 35-47.
DOI URL |
[25] | Kürschner H (2004). Life strategies and adaptations in bryophytes from the Near and Middle East. Turkish Journal of Botany, 28, 73-84. |
[26] |
Lenoir J, Svenning JC (2015). Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography, 38, 15-28.
DOI URL |
[27] |
Lomolino MV (2000). Ecology’s most general, yet protean pattern: the species-area relationship. Journal of Biogeography, 27, 17-26.
DOI URL |
[28] |
Lomolino MV, Weiser MD (2001). Towards a more general species-area relationship: diversity on all islands, great and small. Journal of Biogeography, 28, 431-445.
DOI URL |
[29] | MacArthur RH, Wilson EO (1967). The Theory of Island Biogeography. Princeton University Press, Princeton, USA. |
[30] | Marris E (2007). The escalator effect. Nature Reports Climate Change, 1, 94-96. |
[31] |
Matthews TJ, Rigal F, Kougioumoutzis K, Trigas P, Triantis KA (2020). Unravelling the small-island effect through phylogenetic community ecology. Journal of Biogeography, 47, 2341-2352.
DOI URL |
[32] |
Matthews TJ, Steinbauer MJ, Tzirkalli E, Triantis KA, Whittaker RJ (2014). Thresholds and the species-area relationship: a synthetic analysis of habitat island datasets. Journal of Biogeography, 41, 1018-1028.
DOI URL |
[33] |
Menegotto A, Rangel TF, Schrader J, Weigelt P, Kreft H (2020). A global test of the subsidized island biogeography hypothesis. Global Ecology and Biogeography, 29, 320-330.
DOI |
[34] |
Morrison LW (2014). The small-island effect: empty islands, temporal variability and the importance of species composition. Journal of Biogeography, 41, 1007-1017.
DOI URL |
[35] |
Niering WA (1963). Terrestrial ecology of Kapingamarangi Atoll, Caroline Islands. Ecological Monographs, 33, 131-160.
DOI URL |
[36] |
Pageau C, Vale MM, de Menezes MA, Barçante L, Shaikh M, Alves MAS, Reudink MW (2020). Evolution of altitudinal migration in passerines is linked to diet. Ecology and Evolution, 10, 3338-3345.
DOI PMID |
[37] |
Patiño J, Weigelt P, Guilhaumon F, Kreft H, Triantis KA, Naranjo-Cigala A, Sólymos P, Vanderpoorten A (2014). Differences in species-area relationships among the major lineages of land plants: a macroecological perspective. Global Ecology and Biogeography, 23, 1275-1283.
DOI URL |
[38] |
Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences of the United States of America, 105, 20770-20775.
DOI PMID |
[39] |
Schnabel F, Liu XJ, Kunz M, Barry KE, Bongers FJ, Bruelheide H, Fichtner A, Härdtle W, Li S, Pfaff CT, Schmid B, Schwarz JA, Tang ZY, Yang B, Bauhus J, et al. (2021). Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Science Advances, 7, eabk1643. DOI: 10.1126/sciadv.abk1643.
DOI |
[40] |
Schrader J, König C, Triantis KA, Trigas P, Kreft H, Weigelt P (2020). Species-area relationships on small islands differ among plant growth forms. Global Ecology and Biogeography, 29, 814-829.
DOI URL |
[41] |
Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008). Climate change, elevational range shifts, and bird extinctions. Conservation Biology, 22, 140-150.
DOI PMID |
[42] |
Sfenthourakis S, Triantis KA (2009). Habitat diversity, ecological requirements of species and the Small Island Effect. Diversity and Distributions, 15, 131-140.
DOI URL |
[43] |
Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012). The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology, 18, 3279-3290.
DOI URL |
[44] | Triantis KA, Vardinoyannis K, Tsolaki EP, Botsaris I, Lika K, Mylonas M (2006). Re-approaching the small island effect. Journal of Biogeography, 33, 914-923. |
[45] | Vanderpoorten A, Goffinet B (2009). Introduction to Bryophytes. Cambridge University Press, London. |
[46] |
Wang YP, Chen CW, Millien V (2018a). A global synthesis of the small-island effect in habitat islands. Proceedings of the Royal Society B: Biological Sciences, 285, 20181868. DOI: 10.1098/rspb.2018.1868.
DOI |
[47] |
Wang YP, Millien V, Ding P (2016). On empty islands and the small-island effect. Global Ecology and Biogeography, 25, 1333-1345.
DOI URL |
[48] |
Wang YP, Wang X, Wu Q, Chen CS, Xu AC, Ding P (2018b). The small-island effect in amphibian assemblages on subtropical land-bridge islands of an inundated lake. Current Zoology, 64, 303-309.
DOI URL |
[49] |
Watson DM (2002). A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. Journal of Biogeography, 29, 823-834.
DOI URL |
[50] |
Whitehead DR, Jones CE (1969). Small islands and the equilibrium theory of insular biogeography. Evolution, 23, 171-179.
DOI PMID |
[51] |
Yu J, Li DD, Zhang ZY, Guo SL (2020). Species-area relationship and small-island effect of bryophytes on the Zhoushan Archipelago, China. Journal of Biogeography, 47, 978-992.
DOI URL |
[52] |
Yu J, Shen L, Li DD, Guo SL (2019). Determinants of bryophyte species richness on the Zhoushan Archipelago, China. Basic and Applied Ecology, 37, 38-50.
DOI URL |
[53] |
Zajac RN, Vozarik JM, Gibbons BR (2013). Spatial and temporal patterns in macrofaunal diversity components relative to sea floor landscape structure. PLoS ONE, 8, e65823. DOI: 10.1371/journal.pone.0065823.
DOI |
[54] | Zhang YM, Cao T, Pan BR (2002). A review on the studies of bryophyte ecology in arid and semi-arid areas. Acta Ecologica Sinica, 22, 1129-1134. |
[ 张元明, 曹同, 潘伯荣 (2002). 干旱与半干旱地区苔藓植物生态学研究综述. 生态学报, 22, 1129-1134.] | |
[55] | Zhu Y, Sheng S, Zheng JF, Wu S, Zhang K, Xu Y (2022). Small-island effect in bird assemblages on fragmented woodlots in Huaxi university areas, Guizhou, China. Chinese Journal of Zoology, 57, 205-212. |
[ 朱芸, 盛尚, 郑进凤, 伍素, 张凯, 徐雨 (2022). 贵州花溪大学城破碎化林地中鸟类群落的小岛屿效应. 动物学杂志, 57, 205-212.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn