Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (6): 471-482.DOI: 10.3724/SP.J.1258.2012.00471
Special Issue: 全球变化与生态系统
• Research Articles • Next Articles
ZHAO Hong-Mei1,2,3,*, HUANG Gang1, MA Jian1, LI Yan1,**(), ZHOU Li1,2,3
Received:
2011-12-19
Accepted:
2012-03-27
Online:
2012-12-19
Published:
2012-06-04
Contact:
ZHAO Hong-Mei,LI Yan
ZHAO Hong-Mei, HUANG Gang, MA Jian, LI Yan, ZHOU Li. Responses of surface litter decomposition to seasonal water addition in desert[J]. Chin J Plant Ecol, 2012, 36(6): 471-482.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00471
凋落物类型 Litter type | C (%) | N (%) | P (%) | C/N | C/P |
---|---|---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 36.627 ± 4.504a | 0.694 ± 0.055a | 0.064 ± 0.001a | 53 ± 8a | 571 ± 76a |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 40.786 ± 4.686a | 2.117 ± 0.037b | 0.143 ± 0.001b | 19 ± 2b | 285 ± 33b |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 40.614 ± 3.005a | 1.039 ± 0.134c | 0.132 ± 0.016b | 39 ± 3c | 309 ± 11b |
沙漠绢蒿茎 Seriphidium santolinum stem | 41.260 ± 5.104a | 0.540 ± 0.015d | 0.063 ± 0.0002a | 76 ± 8d | 657 ± 83a |
Table 1 Initial chemical composition of litters (mean ± SD)
凋落物类型 Litter type | C (%) | N (%) | P (%) | C/N | C/P |
---|---|---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 36.627 ± 4.504a | 0.694 ± 0.055a | 0.064 ± 0.001a | 53 ± 8a | 571 ± 76a |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 40.786 ± 4.686a | 2.117 ± 0.037b | 0.143 ± 0.001b | 19 ± 2b | 285 ± 33b |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 40.614 ± 3.005a | 1.039 ± 0.134c | 0.132 ± 0.016b | 39 ± 3c | 309 ± 11b |
沙漠绢蒿茎 Seriphidium santolinum stem | 41.260 ± 5.104a | 0.540 ± 0.015d | 0.063 ± 0.0002a | 76 ± 8d | 657 ± 83a |
Fig. 3 Changes of litter mass remaining under different treatments. A, Eremurus inderiensis leaf. B, Erodium oxyrrhynchum leaf. C, Erodium oxyrrhynchum stem. D, Seriphi- dium santolinum stem. Asterisks and ns are the statistical significance for the treatments (Treat.), decomposition time (Time) and interaction of treatment and decomposition time (Tr × Time) (***, p < 0.001, ns, p > 0.05).
凋落物类型 Litter type | 处理 Treatment | 负指数衰减模型 Negative exponential decomposition model | 决定系数R2 Determination coefficient |
---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 对照 Control | y = 93.482e-0.521t | 0.960 |
冬春增雪 Snow addition in winter-spring | y = 96.339e-0.560t | 0.977 | |
夏季增水 Water addition in summer | y = 93.478e-0.510t | 0.979 | |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 对照 Control | y = 95.944e-0.577t | 0.980 |
冬春增雪 Snow addition in winter-spring | y = 91.872e-0.491t | 0.942 | |
夏季增水 Water addition in summer | y = 98.261e-0.651t | 0.989 | |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 对照 Control | y = 105.036e-0.556t | 0.943 |
冬春增雪 Snow addition in winter-spring | y = 103.101e-0.485t | 0.972 | |
夏季增水 Water addition in summer | y = 102.283e-0.541t | 0.989 | |
沙漠绢蒿茎 Seriphidium santolinum stem | 对照 Control | y = 98.943e-0.238t | 0.976 |
冬春增雪 Snow addition in winter-spring | y = 98.605e-0.223t | 0.977 | |
夏季增水 Water addition in summer | y = 102.283e-0.290t | 0.988 |
Table 2 Negative exponential equations of mass remaining of litters
凋落物类型 Litter type | 处理 Treatment | 负指数衰减模型 Negative exponential decomposition model | 决定系数R2 Determination coefficient |
---|---|---|---|
粗柄独尾草叶 Eremurus inderiensis leaf | 对照 Control | y = 93.482e-0.521t | 0.960 |
冬春增雪 Snow addition in winter-spring | y = 96.339e-0.560t | 0.977 | |
夏季增水 Water addition in summer | y = 93.478e-0.510t | 0.979 | |
尖喙牻牛儿苗叶 Erodium oxyrrhynchum leaf | 对照 Control | y = 95.944e-0.577t | 0.980 |
冬春增雪 Snow addition in winter-spring | y = 91.872e-0.491t | 0.942 | |
夏季增水 Water addition in summer | y = 98.261e-0.651t | 0.989 | |
尖喙牻牛儿苗茎 Erodium oxyrrhynchum stem | 对照 Control | y = 105.036e-0.556t | 0.943 |
冬春增雪 Snow addition in winter-spring | y = 103.101e-0.485t | 0.972 | |
夏季增水 Water addition in summer | y = 102.283e-0.541t | 0.989 | |
沙漠绢蒿茎 Seriphidium santolinum stem | 对照 Control | y = 98.943e-0.238t | 0.976 |
冬春增雪 Snow addition in winter-spring | y = 98.605e-0.223t | 0.977 | |
夏季增水 Water addition in summer | y = 102.283e-0.290t | 0.988 |
因素 Factor | 平方和 Sum of squares | 自由度 df | 均 方 Mean square | F | p |
---|---|---|---|---|---|
分解时间 Decomposition time | 37 670.821 | 3.5 | 10 856.361 | 407.531 | <0.001 |
物种 Species | 27 082.289 | 3.0 | 9 027.430 | 152.324 | <0.001 |
处理 Treatment | 227.389 | 2.0 | 113.694 | 1.918 | 0.159 |
分解时间×物种 Decomposition time × species | 1 861.668 | 10.4 | 178.838 | 6.713 | <0.001 |
分解时间×处理 Decomposition time × treatment | 353.313 | 6.9 | 50.911 | 1.911 | 0.072 |
物种×处理 Species × treatment | 170.258 | 6.0 | 28.376 | 0.479 | 0.820 |
分解时间×物种×处理 Decomposition time × species × treatment | 839.802 | 20.8 | 40.337 | 1.514 | 0.081 |
Table 3 ANOVA results of mass remaining in litters
因素 Factor | 平方和 Sum of squares | 自由度 df | 均 方 Mean square | F | p |
---|---|---|---|---|---|
分解时间 Decomposition time | 37 670.821 | 3.5 | 10 856.361 | 407.531 | <0.001 |
物种 Species | 27 082.289 | 3.0 | 9 027.430 | 152.324 | <0.001 |
处理 Treatment | 227.389 | 2.0 | 113.694 | 1.918 | 0.159 |
分解时间×物种 Decomposition time × species | 1 861.668 | 10.4 | 178.838 | 6.713 | <0.001 |
分解时间×处理 Decomposition time × treatment | 353.313 | 6.9 | 50.911 | 1.911 | 0.072 |
物种×处理 Species × treatment | 170.258 | 6.0 | 28.376 | 0.479 | 0.820 |
分解时间×物种×处理 Decomposition time × species × treatment | 839.802 | 20.8 | 40.337 | 1.514 | 0.081 |
Fig. 4 Changes of N remaining in litters under different treatments. A, Eremurus inderiensis leaf. B, Erodium oxyrrhynchum leaf. C, Erodium oxyrrhynchum stem. D, Seriphidium santolinum stem. Asterisks and ns are the statistical significance for the treatments (Treat.), decomposition time (Time) and interaction of treatment and decomposition time (Tr × Time) (**, p < 0.01, ***, p < 0.001, ns, p > 0.05).
Fig. 5 Relationships between litter mass remaining and nitrogen (N) remaining under different treatments. A, Eremurus inderiensis leaf. B, Erodium oxyrrhynchum leaf. C, Erodium oxyrrhynchum stem. D, Seriphidium santolinum stem. r1, r2 and r3 represent correlation coefficient using simple linear regression to fit the control, snow addition in winter-spring and water addition in summer, respectively (*, p < 0.05; **, p < 0.01).
Fig. 6 Relationships between litter mass remaining and litter nitrogen remaining. r1, r2, r3 and r4 represent correlation coefficients using simple linear regression to fit the Eremurus inderiensis leaf, Erodium oxyrrhynchum leaf, Erodium oxyrrhynchum stem and Seriphidium santolinum stem, respectively. Asterisks denote significant differences between litter mass remaining and nitrogen remaining (**, p < 0.01).
Fig. 7 Relationships between decomposition rate and initial C:N of all litters. Plus sign (+) represents initial C:N of litters. Asterisks denote significant differences between decomposition rate and initial C:N (**, p < 0.01).
Fig. 8 Variations of daily maximum air temperature and daily minimum air temperature in the Gurbantunggut Desert from March 15th to April 15th in 2010 and 2011.
[1] | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. |
[2] | Aerts R, de Caluwe H (1997). Nutritional and plant mediated controls on leaf litter decomposition of Carex species. Ecology, 78, 244-260. |
[3] |
Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622.
DOI URL PMID |
[4] |
Ausin AT, Vitousek PM (2000). Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. Journal of Ecology, 88, 129-138.
DOI URL |
[5] |
Austin AT, Vivanco L (2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442, 555-558.
URL PMID |
[6] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta, DA, Schaeffer SM (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
URL PMID |
[7] | Berg B, Laskowski R (2006). Litter Decomposition: a Guide to Carbon and Nutrient Turnover. Academic Press, London. |
[8] | Brandt LA, King JY, Milchunas DG (2007). Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Global Change Biology, 13, 2193-2205. |
[9] | Chapin FS III, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. 129-144. |
[10] | Cotrufo MF, Inescon P (1995). Effects of enhanced atmosphere CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth. and Picea sitchensis (Bong.) Carr. Plant and Soil, 170, 267-277. |
[11] | Epstein HE, Burke IC, Lauenroth WK (2002). Regional patterns of decomposition and primary production rates in the U.S. great plains: regional ecological analysis. Ecology, 83, 320-327. |
[12] | Fisher FM, Freckman DW, Whitford WG (1990). Decomposition and soil nitrogen availability in Chihuahuan Desert field microcosms. Soil Biology & Biochemistry, 22, 241-249. |
[13] | Fisher FM, Zak JC, Cunningham GL, Whitford WG (1988). Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahuan Desert. Journal of Range Management, 41, 387-391. |
[14] | Fray SD, Elliott ET, Paustian K, Peterson GA (2000). Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biology & Biochemistry, 32, 689-698. |
[15] | Gallardo A, Merino J (1993). Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology, 74, 152-161. |
[16] |
Gallo ME, Sinsabaugh RL, Cabaniss SE (2006). The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology, 34, 82-91.
DOI URL |
[17] | Jacobson KM, Jacobson PJ (1998). Rainfall regulates decomposition of buried cellulose in the Namib Desert. Journal of Arid Environments, 38, 571-583. |
[18] | Kemp PR, Reynolds JF, Virginia RA, Whitford WG (2003). Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments, 53, 21-39. |
[19] | Li YH ( 李永华), Luo TX ( 罗天祥), Lu Q ( 卢琦), Tian XY ( 田晓雅), Wu B ( 吴波), Yang HH ( 杨恒华) (2005). Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province. Acta Ecologica Sinica (生态学报), 25, 994-999. (in Chinese with English abstract) |
[20] | Lu CY ( 卢昌义), Yin Y ( 尹毅), Lin P ( 林鹏) (1994). Studies on dynamics of litter leaf decomposition in a Rhizophora stylosa mangrove forest in Guangxi, China. Journal of Xiamen University (Natural Science)(厦门大学学报(自然科学版)), 33, 56-61. (in Chinese with English abstract) |
[21] | Mackay WP, Silva S, Loring SJ, Whitford WG (1987). The role of subterranean termites in the decomposition of above-ground creosotebush litter. Sociobiology, 13, 235-239. |
[22] | Martínez-Yrízar A, Núñez S, Búrquez A (2007). Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico: effects of habitat and litter quality. Acta Oecologica, 32, 291-300. |
[23] | McCulley RL, Burke IC, Nelson JA, Lauenroth WK, Knapp AK, Kelly EF (2005). Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems, 8, 106-121. |
[24] |
Meentemeyer V (1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
DOI URL |
[25] |
Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
DOI URL |
[26] |
Montaňa C, Ezcurra E, Carrillo A, Delhoume JP (1988). The decomposition of litter in grasslands of northern Mexico: a comparison between arid and non-arid environments. Journal of Arid Environments, 14, 55-60.
DOI URL |
[27] |
Moorhead DL, Reynolds JF (1989). Mechanisms of surface litter mass loss in the northern Chihuahuan Desert: a reinterpretation. Journal of Arid Environments, 16, 157-163.
DOI URL |
[28] |
Moorhead DL, Reynolds JF (1991). A general model of litter decomposition in the northern Chihuahuan Desert. Ecological Modelling, 56, 197-219.
DOI URL |
[29] | Mtambanengwe F, Kirchmann H (1995). Litter from a tropical savanna woodland (miombo): chemical composition and C and N mineralization. Soil Biology & Biochemistry, 27, 1639-1651. |
[30] |
Noy-Meir I (1973). Desert ecosystems: environment and pro- ducers. Annual Review of Ecology Systematic, 4, 25-51.
DOI URL |
[31] | Parker LW, Freckman DW, Steinberger Y, Driggers L, Whitford WG (1984). Effects of simulated rainfall and litter quantities on desert soil biota: soil respiration, microflora and protozoa. Pedobiologia, 27, 185-195. |
[32] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
DOI URL PMID |
[33] |
Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil, 218, 21-30.
DOI URL |
[34] |
Peterjohn WT, Schlesinger WH (1991). Factors controlling denitrification in a Chihuahuan Desert ecosystem. Soil Science Society of America Journal, 55, 1694-1701.
DOI URL |
[35] |
Schaefer D, Steinberger Y, Whitford WG (1985). The failure of nitrogen and lignin control of decomposition in a North American desert. Oecologia, 65, 382-386.
URL PMID |
[36] | Seastedt TR, Parton WJ, Ojima DS (1992). Mass loss and nitrogen dynamics of decaying litter of grasslands: the apparent low nitrogen immobilization potential of root detritus. Canadian Journal of Botany, 70, 384-391. |
[37] |
Steinberger Y, Shmida A, Whitford WG (1990). Decomposi- tion along a rainfall gradient in the Judean desert, Israel. Oecologia, 82, 322-324.
URL PMID |
[38] |
Sternberger Y, Whitford WG (1988). Decomposition process in Negev ecosystems. Oecologia, 75, 61-66.
URL PMID |
[39] | Strojan CL, Randall DC, Turner FB (1987). Relationship of leaf litter decomposition rates to rainfall in the Mojave Desert. Ecology, 68, 741-744. |
[40] | Sun Y ( 孙羽), Zhang T ( 张涛), Tian CY ( 田长彦), Li XL ( 李晓林), Feng G ( 冯固) (2009). Response of grass growth and productivity to enhanced water input in ephemeral desert grassland in Gurbantunggut Desert. Acta Ecologica Sinica (生态学报), 29, 1859-1868. (in Chinese with English abstract) |
[41] |
Taylor BR, Parkinson D, Parsons WFJ (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104.
DOI URL |
[42] | Vossbrinck CR, Coleman DC, Woolley TA (1979). Abiotic and biotic factors in litter decomposition in a semi-arid grassland. Ecology, 60, 265-271. |
[43] |
Wang XQ ( 王雪芹), Jiang J ( 蒋进), Lei JQ ( 雷加强), Zhao CJ ( 赵从举) (2004). Relationship between ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantonggut Desert. Chinese Journal of Applied Ecology (应用生态学报), 15, 556-560. (in Chinese with English abstract)
URL PMID |
[44] | Waring RH, Schlesinger WH (1985). Forest Ecosystems: Concepts and Management. Academic Press, Orlando. 181-210. |
[45] | Whitford WG (2002). Ecology of Desert Systems. Academic Press, New York. |
[46] |
Whitford WG, Martínez-Turanzas G, Martínez-Meza E (1995). Persistence of desertified ecosystems: explanations and implications. Environmental Monitoring and Assessment, 37, 319-332.
URL PMID |
[47] |
Whitford WG, Meetemeyer V, Seastedt TR, Cromack JK, Crossley JDA, Santos P, Todd RL, Waide JB (1981). Exceptions to the AET model: deserts and clear-cut forests. Ecology, 62, 275-277.
DOI URL |
[48] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[49] |
Yahdjian L, Sala OE (2008). Do litter decomposition and nitrogen mineralization show the same trend in the response to dry and wet years in the Patagonian steppe? Journal of Arid Environments, 72, 687-695.
DOI URL |
[50] |
Yahdjian L, Sala OE, Austin AT (2006). Differential controls of water input on litter decomposition and nitrogen dy- namics in the Patagonian steppe. Ecosystems, 9, 128-141.
DOI URL |
[51] | Zhang LY ( 张立运), Chen CD ( 陈昌笃) (2002). On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica (生态学报), 22, 1923-1932. (in Chinese with English abstract) |
[1] | WU Han, BAI Jie, LI Jun-Li, Guli JIAPAER, BAO An-Ming. Study of spatio-temporal variation in fractional vegetation cover and its influencing factors in Xinjiang, China [J]. Chin J Plant Ecol, 2024, 48(1): 41-55. |
[2] | GUO Cai-Hong, YANG Wan-Qin, WU Fu-Zhong, XU Zhen-Feng, YUE Kai, NI Xiang-Yin, YUAN Ji, YANG Fan, TAN Bo. Effects of forest gap size on initial decomposition of twig litter in the subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2018, 42(1): 28-37. |
[3] | DAI Yue,ZHENG Xin-Jun,TANG Li-Song,LI Yan. Dynamics of water usage in Haloxylon ammodendron in the southern edge of the Gurbantünggüt Desert [J]. Chin J Plant Ecol, 2014, 38(11): 1214-1225. |
[4] | WU Qi-Qian, WU Fu-Zhong, YANG Wan-Qin, XU Zhen-Feng, HE Wei, HE Min, ZHAO Ye-Yi, ZHU Jian-Xiao. Effect of seasonal snow cover on litter decomposition in alpine forest [J]. Chin J Plant Ecol, 2013, 37(4): 296-305. |
[5] | XIA Lei, WU Fu-Zhong, YANG Wan-Qin. Contribution of soil fauna to mass loss of Abies faxoniana leaf litter during the freeze-thaw season [J]. Chin J Plant Ecol, 2011, 35(11): 1127-1135. |
[6] | NI Jian, GUO Ke, LIU Hai-Jiang, ZHANG Xin-Shi. ECOLOGICAL REGIONALIZATION OF ARID LANDS IN NORTHWESTERN CHINA [J]. Chin J Plant Ecol, 2005, 29(2): 175-184. |
[7] | JIANG Xia, NI Jian. SPECIES-CLIMATE RELATIONSHIPS OF 10 DESERT PLANT SPECIES AND THEIR ESTIMATED POTENTIAL DISTRIBUTION RANGE IN THE ARID LANDS OF NORTHWESTERN CHINA [J]. Chin J Plan Ecolo, 2005, 29(1): 98-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn