Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (6): 539-549.DOI: 10.3724/SP.J.1258.2012.00539
Special Issue: 稳定同位素生态学
• Research Articles • Previous Articles Next Articles
YANG Bin1,2, XIE Fu-Ti1, WEN Xue-Fa2,*(), SUN Xiao-Min2, WANG Jian-Lin3
Received:
2012-02-14
Accepted:
2012-04-16
Online:
2012-02-14
Published:
2012-06-04
Contact:
WEN Xue-Fa
YANG Bin, XIE Fu-Ti, WEN Xue-Fa, SUN Xiao-Min, WANG Jian-Lin. Diurnal variations of soil evaporation δ18O and factors affecting it in cropland in North China[J]. Chin J Plant Ecol, 2012, 36(6): 539-549.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00539
Fig. 1 Diurnal variations of δ18O of water vapor (δv), soil water at 0-5 cm (δs,5cm) and 15-20 cm (δs,20cm) (A、B) and soil temperature at 5 cm (Ts,5cm) and 20 cm (Ts,20cm) and relative humidity (h) normalized to soil temperature (C、D) during growing period in a winter wheat-summer maize ecosystem at Luancheng (mean ± SD, n = 4).
年序日 Day of year | δv | δs,5cm | δs,20cm | Ts,5cm | Ts,20cm | h5cm | h20cm | ||
---|---|---|---|---|---|---|---|---|---|
(‰) | (℃) | (%) | |||||||
冬小麦 Winter wheat | |||||||||
135-137 | -(13.1 ± 1.2) | -(5.7 ± 0.1) | -(7.1 ± 0.2) | 17.5 ± 1.8 | 16.4 ± 0.7 | 79.0 ± 6.5 | 85.0 ± 9.0 | ||
142-144 | -(9.0 ± 1.4) | -(3.8 ± 0.5) | -(6.4 ± 0.1) | 20.2 ± 2.8 | 18.3 ± 0.9 | 76.9 ± 12.5 | 87.4 ± 20.7 | ||
夏玉米 Summer maize | |||||||||
236-237 | -(14.3 ± 1.2) | -(8.4 ± 0.3) | -(9.0 ± 0.3) | 25.2 ± 2.3 | 24.5 ± 0.6 | 74.9 ± 7.2 | 77.3 ± 10.3 | ||
244-246 | -(16.1 ± 3.4) | -(6.0 ± 0.5) | -(8.9 ± 0.2) | 23.1 ± 2.6 | 23.1 ± 0.7 | 56.6 ± 12.8 | 56.0 ± 10.9 |
Table 1 Mean values of water vapor δ18O (δv) , soil water δ18O (0-5 cm, δs,5cm; 15-20 cm, δs,20cm) , soil temperature (Ts,5cm, Ts,20cm) and relative humidity (h) normalized to soil temperature during growing period in a winter wheat and summer maize ecosystem (mean ± SD)
年序日 Day of year | δv | δs,5cm | δs,20cm | Ts,5cm | Ts,20cm | h5cm | h20cm | ||
---|---|---|---|---|---|---|---|---|---|
(‰) | (℃) | (%) | |||||||
冬小麦 Winter wheat | |||||||||
135-137 | -(13.1 ± 1.2) | -(5.7 ± 0.1) | -(7.1 ± 0.2) | 17.5 ± 1.8 | 16.4 ± 0.7 | 79.0 ± 6.5 | 85.0 ± 9.0 | ||
142-144 | -(9.0 ± 1.4) | -(3.8 ± 0.5) | -(6.4 ± 0.1) | 20.2 ± 2.8 | 18.3 ± 0.9 | 76.9 ± 12.5 | 87.4 ± 20.7 | ||
夏玉米 Summer maize | |||||||||
236-237 | -(14.3 ± 1.2) | -(8.4 ± 0.3) | -(9.0 ± 0.3) | 25.2 ± 2.3 | 24.5 ± 0.6 | 74.9 ± 7.2 | 77.3 ± 10.3 | ||
244-246 | -(16.1 ± 3.4) | -(6.0 ± 0.5) | -(8.9 ± 0.2) | 23.1 ± 2.6 | 23.1 ± 0.7 | 56.6 ± 12.8 | 56.0 ± 10.9 |
Fig. 4 Diurnal variations of δ18O (δE,in-situ and δE,p) calculated with atmosphere water vapor δ18O (δv) acquired by in-situ measurement or equilibrium prediction in a winter wheat (A) and summer maize (B) ecosystem at Luancheng.
Fig. 5 Effect of kinetic factor of Merlivat (Merlivat, 1978), Cappa et al. (Cappa et al., 2003) or Lee et al. (Lee et al., 2009) on daily variation of δ18O of soil evaporation (δE,Merlivat、δE,Cappa and δE,Lee) in a winter wheat (A) and summer maize (B) ecosystem at Luancheng.
Fig. 6 Effect of soil evaporating front at 0-5 cm depth or 15-20 cm depth on daily variations of δ18O of soil evaporation (δE,5cm and δE,20cm) in a winter wheat (A) and summer maize (B) ecosystem at Luancheng.
αe | 平衡分馏系数(无量纲) Equilibrium fractionation factor between liquid water and vapor (dimensionless) | d | 零平面位移 Displacement height (m) |
---|---|---|---|
αk | 动力分馏系数(无量纲) Kinetic fractionation factor (dimensionless) | h | 标准化到蒸发前缘温度的空气相对湿度 Relative humidity normalized to soil temperature (%) |
δ | 相对于标准物质V-SMOW的18O/16O或D/H同位素比值 18O/16O or D/H relative to the value of V-SMOW (‰) | h5cm | 标准化到5 cm土壤温度的空气相对湿度 Relative humidity normalized to soil temperature at 5 cm (%) |
δ18O | 18O/16O的δ值 18O/16O relative to the value of V-SMOW (‰) | h20cm | 标准化到20cm土壤温度的空气相对湿度 Relative humidity normalized to soil temperature at 20 cm (%) |
δD | D/H的δ值 D/H relative to the value of V-SMOW (‰) | H | 冠层高度 Canopy height (m) |
δE | 土壤蒸发水汽的δ18O δ18O of evaporation water (‰) | k | von Karman常数, 等于0.4 von Karman constant, 0.4 |
δE,5cm | 0-5 cm土壤水作为蒸发前缘计算的δE δE calculated with soil water at 0-5 cm (‰) | KH | 冠层顶的涡度扩散系数 eddy diffusivity (s2·m-1) |
δE,20cm | 15-20 cm土壤水作为蒸发前缘计算的δE δE calculated with soil water at 15-20 cm (‰) | lw | 叶宽 Leaf width (m) |
δE,Cappa | δE calculated with kinetic fractionation factor of Cappa et al., (2003) (‰) | L | Monin-Obukhov长度(无量纲) Monin-Obukhov length (dimensionless) |
δE,in-situ | 采用原位连续观测的大气水汽δv计算的δE δE calculated with calculated with atmosphere water vapor δ18O acquired by in-situ measurement (‰) | LAI | 叶面积指数 Leaf area index (m2·m-2) |
δE,Lee | 采用Lee等(2009)的动力分馏系数计算的δE δE calculated with kinetic fractionation factor of Lee et al.,( | ra | 空气动力学阻力 Aerodynamic resistance in the surface layer (s·m-1) |
δE,Merlivat | 采用Merlivat等(1978)的动力分馏系数计算的δE δE calculated with kinetic factor of Merlivat ( | ra,f | 冠层到参考高度之间空气层的空气动力学阻力 Aerodynamic resistance in the air layer between canopy and reference height (s·m-1) |
δE,p | 采用降水平衡预测的δv计算的δE δE calculated with atmosphere water vapor δ18O acquired by equilibrium prediction (‰) | ra,c | 土壤表面到冠层高度之间空气层的空气动力学阻力 Aerodynamic resistance in the air layer between soil surface to the canopy height (s·m-1) |
δp | 降水的δ18O δ18O of precipitation (‰) | rb | 土壤边界层对水汽的阻力 Soil boundary layer resistances to water vapor (s·m-1) |
δs | 土壤蒸发前缘液态水的δ18O δ18O of soil water at evaporating front (‰) | rbw | 冠层对水汽的边界层阻力 Canopy boundary layer resistances to water vapor (s·m-1) |
δs,5cm | 0-5 cm土壤水的δ18O δ18O of soil water at 0-5 cm depth (‰) | rs | 土壤孔隙对水汽的阻力 Soil resistance to water vapor (s·m-1) |
δs,20cm | 15-20 cm土壤水的δ18O δ18O of soil water at 15-20 cm depth (‰) | rt | 参考高度内水汽和热量的总阻力 Total resistance above the foliage surface (s·m-1) |
δv | 大气水汽的δ18O δ18O of atmosphere water vapor (‰) | Ts | 土壤温度 Soil temperature at the evaporating front (℃) |
δv,e | 大气水汽δ18O的降水平衡预测值 δ18O of atmosphere water vapor acquired by equilibrium prediction (‰) | Ts,5cm | 5 cm土壤温度 Soil temperature at 5 cm (℃) |
εeq | 平衡分馏过程引起的同位素富集因子 Equilibrium fractionation factor [εeq = 1000(1-1/αe)] (‰) | Ts,20cm | 20 cm土壤温度 Soil temperature at 20 cm (℃) |
εk | 动力分馏过程引起的同位素富集因子 Kinetic fractionation factor [εk = 1000(αk-1)] (‰) | u* | 摩擦风速 Friction wind speed (m·s-1) |
Φh | 热量的Monin-Obukhov相似函数从地表到参考高度的积分(无量纲) Integral similarity function for heat from soil surface to reference height (dimensionless) | uc | 冠层内平均风速 Mean wind speed in the canopy (m·s-1) |
Φh,c | 热量的Monin-Obukhov相似函数从地表到冠层高度的积分(无量纲) Integral similarity function for heat from soil surface to canopy height (dimensionless) | uh | 冠层顶风速 Wind speed at the canopy top (m·s-1) |
Φm | 动量的Monin-Obukhov相似函数从地表到参考高度的积分(无量纲) Integral similar to Monin-Obukhov function for momentum (dimensionless) | um | 参考高度上风速 Wind speed at the reference height (m·s-1) |
a | 风力衰减系数(无量纲) Extinction coefficient of within-canopy wind profile (dimensionless) | wi | 水汽混合比 Mole mixing ratio of vapor in air (μ mol·mol-1) |
b | 边界层阻力系数 Boundary layer resistance coefficient (s0.5·m-1) | zm | 参考高度 Reference height (m) |
B | 界面底层Dalton数(无量纲) Dalton number of the interfacial sublayer (dimensionless) | zo | 动量的表面粗糙度 Surface roughness for momentum (m) |
CH | 动量传导系数(无量纲) Transfer coefficient (dimensionless) | zoT | 温度的表面粗糙度 Surface roughness for temperature (m) |
Appendix II Notations in the text
αe | 平衡分馏系数(无量纲) Equilibrium fractionation factor between liquid water and vapor (dimensionless) | d | 零平面位移 Displacement height (m) |
---|---|---|---|
αk | 动力分馏系数(无量纲) Kinetic fractionation factor (dimensionless) | h | 标准化到蒸发前缘温度的空气相对湿度 Relative humidity normalized to soil temperature (%) |
δ | 相对于标准物质V-SMOW的18O/16O或D/H同位素比值 18O/16O or D/H relative to the value of V-SMOW (‰) | h5cm | 标准化到5 cm土壤温度的空气相对湿度 Relative humidity normalized to soil temperature at 5 cm (%) |
δ18O | 18O/16O的δ值 18O/16O relative to the value of V-SMOW (‰) | h20cm | 标准化到20cm土壤温度的空气相对湿度 Relative humidity normalized to soil temperature at 20 cm (%) |
δD | D/H的δ值 D/H relative to the value of V-SMOW (‰) | H | 冠层高度 Canopy height (m) |
δE | 土壤蒸发水汽的δ18O δ18O of evaporation water (‰) | k | von Karman常数, 等于0.4 von Karman constant, 0.4 |
δE,5cm | 0-5 cm土壤水作为蒸发前缘计算的δE δE calculated with soil water at 0-5 cm (‰) | KH | 冠层顶的涡度扩散系数 eddy diffusivity (s2·m-1) |
δE,20cm | 15-20 cm土壤水作为蒸发前缘计算的δE δE calculated with soil water at 15-20 cm (‰) | lw | 叶宽 Leaf width (m) |
δE,Cappa | δE calculated with kinetic fractionation factor of Cappa et al., (2003) (‰) | L | Monin-Obukhov长度(无量纲) Monin-Obukhov length (dimensionless) |
δE,in-situ | 采用原位连续观测的大气水汽δv计算的δE δE calculated with calculated with atmosphere water vapor δ18O acquired by in-situ measurement (‰) | LAI | 叶面积指数 Leaf area index (m2·m-2) |
δE,Lee | 采用Lee等(2009)的动力分馏系数计算的δE δE calculated with kinetic fractionation factor of Lee et al.,( | ra | 空气动力学阻力 Aerodynamic resistance in the surface layer (s·m-1) |
δE,Merlivat | 采用Merlivat等(1978)的动力分馏系数计算的δE δE calculated with kinetic factor of Merlivat ( | ra,f | 冠层到参考高度之间空气层的空气动力学阻力 Aerodynamic resistance in the air layer between canopy and reference height (s·m-1) |
δE,p | 采用降水平衡预测的δv计算的δE δE calculated with atmosphere water vapor δ18O acquired by equilibrium prediction (‰) | ra,c | 土壤表面到冠层高度之间空气层的空气动力学阻力 Aerodynamic resistance in the air layer between soil surface to the canopy height (s·m-1) |
δp | 降水的δ18O δ18O of precipitation (‰) | rb | 土壤边界层对水汽的阻力 Soil boundary layer resistances to water vapor (s·m-1) |
δs | 土壤蒸发前缘液态水的δ18O δ18O of soil water at evaporating front (‰) | rbw | 冠层对水汽的边界层阻力 Canopy boundary layer resistances to water vapor (s·m-1) |
δs,5cm | 0-5 cm土壤水的δ18O δ18O of soil water at 0-5 cm depth (‰) | rs | 土壤孔隙对水汽的阻力 Soil resistance to water vapor (s·m-1) |
δs,20cm | 15-20 cm土壤水的δ18O δ18O of soil water at 15-20 cm depth (‰) | rt | 参考高度内水汽和热量的总阻力 Total resistance above the foliage surface (s·m-1) |
δv | 大气水汽的δ18O δ18O of atmosphere water vapor (‰) | Ts | 土壤温度 Soil temperature at the evaporating front (℃) |
δv,e | 大气水汽δ18O的降水平衡预测值 δ18O of atmosphere water vapor acquired by equilibrium prediction (‰) | Ts,5cm | 5 cm土壤温度 Soil temperature at 5 cm (℃) |
εeq | 平衡分馏过程引起的同位素富集因子 Equilibrium fractionation factor [εeq = 1000(1-1/αe)] (‰) | Ts,20cm | 20 cm土壤温度 Soil temperature at 20 cm (℃) |
εk | 动力分馏过程引起的同位素富集因子 Kinetic fractionation factor [εk = 1000(αk-1)] (‰) | u* | 摩擦风速 Friction wind speed (m·s-1) |
Φh | 热量的Monin-Obukhov相似函数从地表到参考高度的积分(无量纲) Integral similarity function for heat from soil surface to reference height (dimensionless) | uc | 冠层内平均风速 Mean wind speed in the canopy (m·s-1) |
Φh,c | 热量的Monin-Obukhov相似函数从地表到冠层高度的积分(无量纲) Integral similarity function for heat from soil surface to canopy height (dimensionless) | uh | 冠层顶风速 Wind speed at the canopy top (m·s-1) |
Φm | 动量的Monin-Obukhov相似函数从地表到参考高度的积分(无量纲) Integral similar to Monin-Obukhov function for momentum (dimensionless) | um | 参考高度上风速 Wind speed at the reference height (m·s-1) |
a | 风力衰减系数(无量纲) Extinction coefficient of within-canopy wind profile (dimensionless) | wi | 水汽混合比 Mole mixing ratio of vapor in air (μ mol·mol-1) |
b | 边界层阻力系数 Boundary layer resistance coefficient (s0.5·m-1) | zm | 参考高度 Reference height (m) |
B | 界面底层Dalton数(无量纲) Dalton number of the interfacial sublayer (dimensionless) | zo | 动量的表面粗糙度 Surface roughness for momentum (m) |
CH | 动量传导系数(无量纲) Transfer coefficient (dimensionless) | zoT | 温度的表面粗糙度 Surface roughness for temperature (m) |
[1] |
Baldocchi DD (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9, 479-492.
DOI URL |
[2] |
Barnes CJ, Allison GB (1988). Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. Journal of Hydrology, 100, 143-176.
DOI URL |
[3] |
Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC (2003). Isotopic fractionation of water during evaporation. Journal of Geophysical Research-Atmospheres, 108, 4525-4534.
DOI URL |
[4] | Cermak J, Nadezhdina N (1998). Sapwood as the scaling parameter-defining according to xylem water content or radial pattern of sap flow? Annals of Forest Science, 55, 509-521. |
[5] | Craig H, Gordon LI (1965). Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E ed. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Laboratory of Geology and Nuclear Science, Pisa, Italy. 9-130. |
[6] | Farquhar GD, Hubick KT, Condon AG (1989). Carbon isotope discrimination and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA eds. Stable Isotope in Ecological Research. Springer-Verlag, New York . 21-40. |
[7] |
Flanagan LB, Comstock JP, Ehleringer JR (1991). Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology, 96, 588-596.
URL PMID |
[8] |
Froehlich K (2000). Evaluating the water balance of inland seas using isotopic tracers: the Caspian Sea experience. Hydrological Processes, 14, 1371-1383.
DOI URL |
[9] | Gat JR (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24, 225-262. |
[10] |
Gat JR (2008). The isotopic composition of evaporating waters—review of the historical evolution leading up to the Craig-Gordon model. Isotopes in Environmental and Health Studies, 44, 5-9.
URL PMID |
[11] |
Gochis DJ, Cuenca RH (2000). Plant water use and crop curves for hybrid poplars. Journal of Irrigation and Drainage Engineering, 126, 206-214.
DOI URL |
[12] |
Helliker BR, Roden JS, Cook C, Ehleringer JR (2002). A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor. Rapid Communications in Mass Spectrometry, 16, 929-932.
URL PMID |
[13] |
Horita J, Rozanski K, Cohen S (2008). Isotope effects in the evaporation of water: a status report of the Craig-Gordon model. Isotopes in Environmental and Health Studies, 44, 23-49.
URL PMID |
[14] |
Horita J, Wesolowski DJ (1994). Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58, 3425-3437.
DOI URL |
[15] | Hu ZM, Yu GR, Zhou YL, Sun XM, Li YN, Shi PL, Wang YF, Song X, Zheng ZM, Zhang L, Li SG (2009). Partitioning of evapotranspiration and its controls in four grassland ecosystems: application of a two-source model. Agricu- ltural and Forest Meteorology, 149, 1410-1420. |
[16] |
Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005). Ecohydrological implications of woody plant encro- achment. Ecology, 86, 308-319.
DOI URL |
[17] | Jacob H, Sonntag C (1991). An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus Series B- Chemical and Physical Meteorology, 43, 291-300. |
[18] |
Lai CT, Ehleringer JR, Bond BJ, Paw UKT (2006). Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ 18O of water vapour in Pacific Northwest coniferous forests. Plant, Cell & Environment, 29, 77-94.
DOI URL PMID |
[19] | Lee X, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009). Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochemical Cycles, 23, GB1002, doi: 10.1029/2008- GB003331. |
[20] |
Lee XH, Sargent S, Smith R, Tanner B (2005). In situ measurement of the water vapor18O/16O isotope ratio for atmospheric and ecological applications. Journal of Atmospheric and Oceanic Technology, 22, 555-565.
DOI URL |
[21] |
Lee XH, Smith R, Williams J (2006). Water vapour 18O/16O isotope ratio in surface air in New England, USA. Tellus Series B-Chemical and Physical Meteorology, 58, 293-304.
DOI URL |
[22] | Majoube M (1971). Fractionnement en oxygene-18 et en deuterium entre l'eau et sa vapeur. Journal De Chimie Physique Et De Physico-Chimie Biologiue, 68, 1423-1436. |
[23] |
Meiresonne L, Nadezhdin N, Cermak J, Van Slycken J, Ceulemans R (1999). Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium). Agricultural and Forest Meteorology, 96, 165-179.
DOI URL |
[24] |
Merlivat L (1978). Molecular diffusivities of H216O, HD16O, and H218O in gases. The Journal of Chemical Physics, 69, 2864-2871.
DOI URL |
[25] |
Moreira MZ, Sternberg LD, Martinelli LA, Victoria RL, Barbosa EM, Bonates LCM, Nepstad DC (1997). Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biology, 3, 439-450.
DOI URL |
[26] |
Ripullone F, Matsuo N, Stuart-Williams H, Wong SC, Borghetti M, Tani M, Farquhar GD (2008). Environmental effects on oxygen isotope enrichment of leaf water in cotton leaves. Plant Physiology, 146, 729-736.
URL PMID |
[27] |
Roden JS, Ehleringer JR (1999). Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions. Plant Physiology, 120, 1165-1174.
URL PMID |
[28] |
Shuttleworth WJ, Wallace JS (1985). Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111, 839-855.
DOI URL |
[29] | Sun HY ( 孙宏勇) (2007). Experiments and Simulation of the Dynamic Change of Soil Water in Farmland and the Water-Saving Effect of Irrigations—Case Study on Luancheng National station (农田水分动态与节水灌溉效应实验与模拟——以国家台站栾城为例). PhD dissertation, Institute of Geographic Sciences and Natural Resources Research. Chinese Academy of Sciences, Beijing. 17-21. (in Chinese with English abstract) |
[30] | Sun HY ( 孙宏勇), Liu CM ( 刘昌明), Zhang XY ( 张喜英), Zhang YQ ( 张永强), Pei D ( 裴东) (2004). The changing laws of the diurnal evapotranspiration and soil evaporation between plants in the winter wheat field of the North China Plain. Chinese Journal of Eco-Agriculture (中国生态农业学报), 12(3), 62-64. (in Chinese with English abstract) |
[31] | Torres EA, Calera A (2010). Bare soil evaporation under high evaporation demand: a proposed modification to the FAO-56 model. Hydrological Sciences Journal, 55, 303-315. |
[32] | Tsujimura M, Sasaki L, Yamanaka T, Sugimoto A, Li SG, Matsushima D, Kotani A, Saandar M (2007). Vertical distribution of stable isotopic composition in atmospheric water vapor and subsurface water in grassland and forest sites, eastern Mongolia. Journal of Hydrology, 333, 35-46. |
[33] | van de Griend AA, Owe M (1994). Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions. Water Resources Research, 30, 181. |
[34] | Walker CD, Brunel JP (1990). Examining evapotranspiration in a semi-arid region using stable isotopes of hydrogen and oxygen. Journal of Hydrology, 118, 55-75. |
[35] | Wang XF, Yakir D (2000). Using stable isotopes of water in evapotranspiration studies. Hydrological Processes, 14, 1407-1421. |
[36] |
Welp LR, Lee XH, Kim K, Griffis TJ, Billmark KA, Baker JM (2008). δ18O of water vapor, evapotranspiration and the sites of leaf evaporation in a soybean canopy. Plant, Cell & Environment, 31, 1214-1228.
URL PMID |
[37] | Wen XF ( 温学发), Zhang SC ( 张世春), Sun XM ( 孙晓敏), Yu GR ( 于贵瑞) (2008). Recent advances in H218O enrichment in leaf water. Chinese Journal of Plant Ecology (植物生态学报), 32, 961-966. (in Chinese with English abstract) |
[38] |
Wen XF, Lee XH, Sun XM, Wang JL, Hu ZM, Li SG, Yu GR (2012a). Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia, 168, 549-561.
URL PMID |
[39] | Wen XF, Lee XH, Sun XM, Wang JL, Tang YK, Li SG, Yu GR (2012b). Intercomparison of four commercial analyzers for water vapor isotope measurement. Journal of Atmospheric and Oceanic Technology, 29, 235-247. |
[40] |
Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee XH (2008). Continuous measurement of water vapor D/H and18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 349, 489-500.
DOI URL |
[41] | Wen XF, Zhang SC, Sun XM, Yu GR, Lee XH (2010). Water vapor and precipitation isotope ratios in Beijing, China. Journal of Geophysical Research, 115, D01103, doi: 10.1029/2009JD012408. |
[42] |
Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001). A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106, 153-168.
DOI URL |
[43] |
Wythers KR, Lauenroth WK, Paruelo JM (1999). Bare-soil evaporation under semiarid field conditions. Soil Science Society of America Journal, 63, 1341-1349.
DOI URL |
[44] | Xiao W, Lee XH, Griffis TJ, Kim K, Welp LR, Yu Q (2010). A modeling investigation of canopy-air oxygen isotopic exchange of water vapor and carbon dioxide in a soybean field. Journal of Geophysical Research, 115, G01004, doi: 10.1029/2009JG001163. |
[45] | Xiao W, Lee XH, Wen XF, Sun XM, Zhang SC (2012). Modeling biophysical controls on canopy foliage water18O enrichment in wheat and corn. Global Change Biology, 18, 1769-1780. |
[46] | Xu Z, Yang HB, Liu FD, An SQ, Cui J, Wang ZS, Liu SR (2008). Partitioning evapotranspiration flux components in a subalpine shrubland based on stable isotopic measure- ments. Botanical Studies, 49, 351-361. |
[47] |
Yakir D, Sternberg LSL (2000). The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123, 297-311.
URL PMID |
[48] | Yamanaka T, Yonetani T (1999). Dynamics of the evaporation zone in dry sandy soils. Journal of Hydrology, 217, 135-148. |
[49] | Yepez EA, Huxman TE, Ignace DD, English NB, Weltzin JF, Castellanos AE, Williams DG (2005). Dynamics of transpiration and evaporation following a moisture pulse in semiarid grassland: a chamber-based isotope method for partitioning flux components. Agricultural and Forest Meteorology, 132, 359-376. |
[50] | Yepez EA, Williams DG, Scott RL, Lin GH (2003). Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic comp- osition of water vapor. Agricultural and Forest Meteor- ology, 119, 53-68. |
[51] | Yu GR, Wen XF, Sun XM, Tanner BD, Lee XH, Chen JY (2006). Overview of China FLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 137, 125-137. |
[52] | Zhang SC, Sun XM, Wang JL, Yu GR, Wen XF (2011). Short-term variations of vapor isotope ratios reveal the influence of atmospheric processes. Journal of Geo- graphical Sciences, 21, 401-416. |
[53] | Zhang SC, Wen XF, Wang JL, Yu GR, Sun XM (2010). The use of stable isotopes to partition evapotranspiration fluxes into evaporation and transpiration. Acta Ecologica Sinica, 30, 201-209. |
[1] | WEN Xue-Fa, ZHANG Shi-Chun, SUN Xiao-Min, YU Gui-Rui. RECENT ADVANCES IN H218O ENRICHMENT IN LEAF WATER [J]. Chin J Plant Ecol, 2008, 32(4): 961-966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn