Chin J Plant Ecol ›› 2008, Vol. 32 ›› Issue (5): 1072-1083.DOI: 10.3773/j.issn.1005-264x.2008.05.012
Special Issue: 青藏高原植物生态学:生理生态学
• Original article • Previous Articles Next Articles
YIN Hua-Jun1, LAI Ting1, CHENG Xin-Ying1, JIANG Xian-Min2, LIU Qing1,*()
Received:
2008-02-22
Accepted:
2008-05-30
Online:
2008-02-22
Published:
2008-09-30
Contact:
LIU Qing
YIN Hua-Jun, LAI Ting, CHENG Xin-Ying, JIANG Xian-Min, LIU Qing. WARMING EFFECTS ON GROWTH AND PHYSIOLOGY OF SEEDLINGS OF BETULA ALBO-SINENSIS AND ABIES FAXONIANA UNDER TWO CONTRASTING LIGHT CONDITIONS IN SUBALPINE CONIFEROUS FOREST OF WESTERN SICHUAN, CHINA[J]. Chin J Plant Ecol, 2008, 32(5): 1072-1083.
月份 Month | 林外空地 Forest opening | 60年人工林 The 60-year plantation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | |||||||||
4月 | OTC | 5.78 | 3.87 | 69.12 | 5.20 | 3.63 | 81.32 | |||||||
Apr. | Con. | 5.30 | 3.43 | 79.58 | 5.00 | 3.39 | 88.42 | |||||||
5月 | OTC | 9.01 | 7.11 | 82.35 | 8.41 | 6.79 | 94.83 | |||||||
May | Con. | 8.30 | 6.89 | 92.24 | 8.15 | 6.61 | 100 | |||||||
6月 | OTC | 11.74 | 10.28 | 78.97 | 11.25 | 9.92 | 91.08 | |||||||
Jun. | Con. | 11.09 | 10.05 | 88.68 | 10.82 | 9.74 | 98.54 | |||||||
7月 | OTC | 15.67 | 14.54 | 73.35 | 15.04 | 13.43 | 85.94 | |||||||
Jul. | Con. | 14.85 | 13.49 | 84.92 | 14.57 | 13.28 | 94.35 | |||||||
8月 | OTC | 15.64 | 13.72 | 89.16 | 14.89 | 13.15 | 100 | |||||||
Aug. | Con. | 14.89 | 13.52 | 97.07 | 14.44 | 13.14 | 100 | |||||||
9月 | OTC | 11.32 | 10.92 | 81.31 | 10.68 | 10.54 | 95.90 | |||||||
Sept. | Con. | 10.39 | 10.69 | 93.65 | 10.08 | 10.43 | 100 | |||||||
平均 | OTC | 11.52 | 10.06 | 70.40 | 10.92 | 9.67 | 81.56 | |||||||
Average | Con. | 10.83 | 9.65 | 78.16 | 10.41 | 9.34 | 86.84 |
Table 1 Mean air temperature at 15 cm aboveground, soil surface temperature, and air relative humidity inside the open-top chamber (OTC) and at the control plot under two contrasting light conditions from April to September of 2006
月份 Month | 林外空地 Forest opening | 60年人工林 The 60-year plantation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | |||||||||
4月 | OTC | 5.78 | 3.87 | 69.12 | 5.20 | 3.63 | 81.32 | |||||||
Apr. | Con. | 5.30 | 3.43 | 79.58 | 5.00 | 3.39 | 88.42 | |||||||
5月 | OTC | 9.01 | 7.11 | 82.35 | 8.41 | 6.79 | 94.83 | |||||||
May | Con. | 8.30 | 6.89 | 92.24 | 8.15 | 6.61 | 100 | |||||||
6月 | OTC | 11.74 | 10.28 | 78.97 | 11.25 | 9.92 | 91.08 | |||||||
Jun. | Con. | 11.09 | 10.05 | 88.68 | 10.82 | 9.74 | 98.54 | |||||||
7月 | OTC | 15.67 | 14.54 | 73.35 | 15.04 | 13.43 | 85.94 | |||||||
Jul. | Con. | 14.85 | 13.49 | 84.92 | 14.57 | 13.28 | 94.35 | |||||||
8月 | OTC | 15.64 | 13.72 | 89.16 | 14.89 | 13.15 | 100 | |||||||
Aug. | Con. | 14.89 | 13.52 | 97.07 | 14.44 | 13.14 | 100 | |||||||
9月 | OTC | 11.32 | 10.92 | 81.31 | 10.68 | 10.54 | 95.90 | |||||||
Sept. | Con. | 10.39 | 10.69 | 93.65 | 10.08 | 10.43 | 100 | |||||||
平均 | OTC | 11.52 | 10.06 | 70.40 | 10.92 | 9.67 | 81.56 | |||||||
Average | Con. | 10.83 | 9.65 | 78.16 | 10.41 | 9.34 | 86.84 |
生长参数 Growth parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
株高 Plant height (cm) | 55.22±2.31c | 56.22±1.31c | 72.25±3.36b | 97.33±1.54a | ** | ** | ** |
地径 Root collar diameter (mm) | 7.86±0.51c | 8.44±0.45c | 13.16±0.84b | 15.14±0.54a | ** | ** | * |
总生物量 Total biomass (g) | 11.57±1.13c | 12.54±1.08c | 56.28±3.62b | 78.21±4.02a | ** | ** | * |
叶重 Leaf mass (g) | 0.49±0.08c | 0.52±0.06c | 7.36±1.65b | 18.77±1.46a | NS | ** | ** |
根重 Root mass (g) | 5.44±0.78b | 5.71±0.61b | 24.41±1.26a | 26.89±1.81a | NS | * | NS |
茎重 Stem mass (g) | 5.64±0.46c | 6.31±0.39c | 24.51±1.63b | 32.55±1.33a | NS | * | NS |
岷江冷杉 Abies faxoniana | |||||||
株高 Plant height (cm) | 13.83±1.70b | 15.36±1.47a | 12.33±1.92b | 13.33±1.49b | * | ** | * |
地径 Root collar diameter (mm) | 4.35±0.19b | 4.87±0.23a | 3.79±0.32c | 3.95±0.44c | * | ** | * |
总生物量 Total biomass (g) | 2.17±0.27b | 3.44±0.40a | 1.75±0.17b | 1.84±0.16b | ** | ** | * |
叶重 Leaf mass (g) | 0.63±0.04b | 1.20±0.12a | 0.32±0.09c | 0.36±0.08c | NS | *** | NS |
根重 Root mass (g) | 0.65±0.06b | 0.93±0.09a | 0.60±0.07b | 0.64±0.08b | NS | * | NS |
茎重 Stem mass (g) | 0.89±0.09b | 1.35±0.11a | 0.83±0.08b | 0.84±0.07b | NS | ** | NS |
Table 2 The effects of warming on the growth, biomass accumulation and allocation of Betula albo-sinensis and Abies faxoniana seedlings grown under two contrasting light regimes
生长参数 Growth parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
株高 Plant height (cm) | 55.22±2.31c | 56.22±1.31c | 72.25±3.36b | 97.33±1.54a | ** | ** | ** |
地径 Root collar diameter (mm) | 7.86±0.51c | 8.44±0.45c | 13.16±0.84b | 15.14±0.54a | ** | ** | * |
总生物量 Total biomass (g) | 11.57±1.13c | 12.54±1.08c | 56.28±3.62b | 78.21±4.02a | ** | ** | * |
叶重 Leaf mass (g) | 0.49±0.08c | 0.52±0.06c | 7.36±1.65b | 18.77±1.46a | NS | ** | ** |
根重 Root mass (g) | 5.44±0.78b | 5.71±0.61b | 24.41±1.26a | 26.89±1.81a | NS | * | NS |
茎重 Stem mass (g) | 5.64±0.46c | 6.31±0.39c | 24.51±1.63b | 32.55±1.33a | NS | * | NS |
岷江冷杉 Abies faxoniana | |||||||
株高 Plant height (cm) | 13.83±1.70b | 15.36±1.47a | 12.33±1.92b | 13.33±1.49b | * | ** | * |
地径 Root collar diameter (mm) | 4.35±0.19b | 4.87±0.23a | 3.79±0.32c | 3.95±0.44c | * | ** | * |
总生物量 Total biomass (g) | 2.17±0.27b | 3.44±0.40a | 1.75±0.17b | 1.84±0.16b | ** | ** | * |
叶重 Leaf mass (g) | 0.63±0.04b | 1.20±0.12a | 0.32±0.09c | 0.36±0.08c | NS | *** | NS |
根重 Root mass (g) | 0.65±0.06b | 0.93±0.09a | 0.60±0.07b | 0.64±0.08b | NS | * | NS |
茎重 Stem mass (g) | 0.89±0.09b | 1.35±0.11a | 0.83±0.08b | 0.84±0.07b | NS | ** | NS |
Fig. 1 Effects of warming on the biomass allocation of Betula albo-sinensis(A) and Abies faxoniana (B) seedlings grown under two contrasting light regimes
Fig. 2 Effects of warming on photosynthetic pigment concentrations in the leaves of Betula albo-sinensis (A) and Abies faxoniana (B) seedlings grown under two contrasting light regimes
光合参数 Photosynthetic parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
Pn(μmol?m-2?s-1) | 2.18±0.32c | 2.46±0.36c | 6.28±1.16b | 8.45±1.57a | * | *** | ** |
Tr(mmol?m-2?s-1) | 0.84±0.05c | 0.86±0.04c | 2.78±0.32b | 4.05±0.93a | NS | ** | NS |
Ci (μmol?mol-1) | 310..5±9.8a | 289.4±6.5a | 196.4±8.3b | 122.6±8.9c | NS | * | NS |
Pmax(μmol?m-2?s-1) | 6.61±0.14c | 7.22±0.20c | 15.42±1.17b | 18.65±1.56a | ** | ** | * |
Φ (mol CO2?mmol-1) | 0.04±0.02b | 0.05±0.01a | 0.06±0.02a | 0.06±0.02a | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.87±0.06c | 0.94±0.10c | 1.38±0.12b | 1.97±0.17a | NS | * | NS |
LCP (μmol?m-2?s-1) | 24.32±2.12b | 24.13±3.10b | 68.51±3.83a | 56.53±2.93a | NS | *** | * |
岷江冷杉 Abies faxoniana | |||||||
Pn(μmol?m-2?s-1) | 2.14±0.15b | 2.34±0.17a | 1.95±0.15b | 2.03±0.14b | NS | ** | * |
Tr(mmol?m-2?s-1) | 0.84±0.07b | 0.92±0.08b | 1.25±0.07a | 1.28±0.09a | NS | ** | NS |
Ci (μmol?mol-1) | 268.3±14.8a | 256.5±15.9a | 228.6±18.3b | 218.3±15.6b | NS | * | NS |
Pmax(μmol?m-2?s-1) | 3.15±0.28c | 3.98±0.21b | 4.23±0.45a | 4.47±0.49a | * | ** | * |
Φ (mol CO2?mmol-1) | 0.05±0.02a | 0.06±0.01a | 0.02±0.00b | 0.03±0.01b | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.27±0.03b | 0.29±0.03b | 0.92±0.09a | 0.96±0.10a | NS | ** | * |
LCP (μmol?m-2?s-1) | 20.64±2.14b | 18.46±2.07b | 39.26±3.47a | 38.45±3.45a | NS | ** | NS |
Table 3 The effects of warming on photosynthetic parameters of Betula albo-sinensis and Abies faxoniana seedlings grown under two contrasting light regimes
光合参数 Photosynthetic parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
Pn(μmol?m-2?s-1) | 2.18±0.32c | 2.46±0.36c | 6.28±1.16b | 8.45±1.57a | * | *** | ** |
Tr(mmol?m-2?s-1) | 0.84±0.05c | 0.86±0.04c | 2.78±0.32b | 4.05±0.93a | NS | ** | NS |
Ci (μmol?mol-1) | 310..5±9.8a | 289.4±6.5a | 196.4±8.3b | 122.6±8.9c | NS | * | NS |
Pmax(μmol?m-2?s-1) | 6.61±0.14c | 7.22±0.20c | 15.42±1.17b | 18.65±1.56a | ** | ** | * |
Φ (mol CO2?mmol-1) | 0.04±0.02b | 0.05±0.01a | 0.06±0.02a | 0.06±0.02a | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.87±0.06c | 0.94±0.10c | 1.38±0.12b | 1.97±0.17a | NS | * | NS |
LCP (μmol?m-2?s-1) | 24.32±2.12b | 24.13±3.10b | 68.51±3.83a | 56.53±2.93a | NS | *** | * |
岷江冷杉 Abies faxoniana | |||||||
Pn(μmol?m-2?s-1) | 2.14±0.15b | 2.34±0.17a | 1.95±0.15b | 2.03±0.14b | NS | ** | * |
Tr(mmol?m-2?s-1) | 0.84±0.07b | 0.92±0.08b | 1.25±0.07a | 1.28±0.09a | NS | ** | NS |
Ci (μmol?mol-1) | 268.3±14.8a | 256.5±15.9a | 228.6±18.3b | 218.3±15.6b | NS | * | NS |
Pmax(μmol?m-2?s-1) | 3.15±0.28c | 3.98±0.21b | 4.23±0.45a | 4.47±0.49a | * | ** | * |
Φ (mol CO2?mmol-1) | 0.05±0.02a | 0.06±0.01a | 0.02±0.00b | 0.03±0.01b | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.27±0.03b | 0.29±0.03b | 0.92±0.09a | 0.96±0.10a | NS | ** | * |
LCP (μmol?m-2?s-1) | 20.64±2.14b | 18.46±2.07b | 39.26±3.47a | 38.45±3.45a | NS | ** | NS |
Fig. 3 Effects of warming on diurnal change of maximal PSⅡ efficiency (Fv/Fm) in leaves of Betula albo-sinensis(A) and Abies faxoniana (B) seedlings grown under two contrasting light regimes
[1] | Aerts R, Cornelissen JHC, Dorrepaal E (2006). Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 182,65-77. |
[2] | Aiken RM, Smucker AJM (1996). Root system regulation of whole plant growth. Review of Phytopathology, 25,325-346. |
[3] |
Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003). Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology, 23,33-41.
DOI URL PMID |
[4] |
Bilger W, Fisahn J, Brummet W (1995). Violaxanthin cycle pigment contents in potato and tobacco plants with genetically reduced photosynthetic capacity. Plant Physiology, 108,1479-1486.
URL PMID |
[5] | Björkman O (1981). Responses to different quantum flux densities. In: Lange OL, Nobe PS, Ziegler Heds. Encyclopedia of Plant Physiology. Springer-Verlag, Berlin,57-106. |
[6] |
Cai TB, Dang QL (2002). Effects of soil temperature on parameters for a coupled photosynthesis-stomatal conductance model. Tree Physiology, 22,819-829.
DOI URL PMID |
[7] |
Camm EL, Harper GJ (1991). Temporal variations in cold sensitivity of root growth in cold-stored white spruce seedlings. Tree Physiology, 9,425-431.
DOI URL PMID |
[8] | Cornelissen JHC, Castro Diez P, Hunt R (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84,755-765. |
[9] | Danby RK, Hik DS (2007). Responses of white spruce ( Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology, 13,437-451. |
[10] | Domisch T, Finér L, Lehto T (2002). Growth, carbohydrate and nutrient allocation of Scots pine seedlings after exposure to simulated low soil temperature in spring. Plant and Soil, 246,75-86. |
[11] | Havranek WM, Tranquillini W (1995). Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Hinckley TM eds. Ecophysiology of Coniferous Forests. Academic Press, San Diego, CA, USA, 95-124. |
[12] | Hirose T, Werger MJA (1987). Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solodago alissima stand. Physiologia Plantarum, 70,215-222. |
[13] |
Hollister RD, Webber PJ (2000). Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology, 6,835-842.
DOI URL |
[14] | IPCC Intergovernmental Panel on Climate Change (2007). Contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds. Climate Change in 2007: Mitigation. Cambridge University Press, Cambridge, UK. |
[15] |
Kauppi P, Posch M (1985). Sensitivity of boreal forests to possible climatic warming. Climatic Change, 7,45-54.
DOI URL |
[16] |
Kennedy AD (1995). Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biology, 1,29-42.
DOI URL |
[17] | Kolek J, Kozinka V (1991). Physiology of the Plant Root System. Kluwer Academic Publishers, Dordrecht, 26. |
[18] | Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42,313-349. |
[19] |
Kullman L (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology, 90,68-77.
DOI URL |
[20] |
Lewis JD, Olszyk D, Tingey DT (1999). Seasonal patterns of photosynthetic light responses in Douglas-fir seedlings subjected to elevated atmospheric CO 2 and temperature. Tree Physiology, 19,243-252.
URL PMID |
[21] | Lichtenthaler HK (1987). Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO eds. Methods in Enzymology. Academic Press, New York, 350-381. |
[22] | Liu Q (刘庆) (2002). Ecological Research on Subalpine Coniferous Forests in China(亚高山针叶林生态学研究). Sichuan University Press,Chengdu. (in Chinese) |
[23] | Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20,1729-1742. |
[24] | Lloret F, Peñuelas J, Estiarte M (2004). Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Global Change Biology, 10,248-258. |
[25] | Lopushinsky W, Max TA (1990). Effect of soil temperature on root and shoot growth and on budburst timing in conifer seedling transplants. New Forests, 4,107-124. |
[26] | Marion GM, Henry GHR, Freckman DW, Johstone J, Jones G, Jones MH, Levesque E, Molau U, Parsons AN, Svoboda J, Virginia RA (1997). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3 (Suppl. 1),20-30. |
[27] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51,659-668.
DOI URL PMID |
[28] | Mitchell AK, Arnott JT (1995). Effects of shade on the morphology and physiology of amabilis fir and western hemlock seedlings. New Forests, 10,79-98. |
[29] | Mortensen LV (1994). Effect of carbon dioxide concentration on assimilation partitioning, photosynthesis and transpiration of Betula pendula. Roth and Picea abies (L.) Karst. seedlings at two temperatures. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 44,164-169. |
[30] | Ormrod D, Lesser VM, Olszyk DM, Tingey DT (1999). Elevated temperature and carbon dioxide affect chlorophyll and carotenoids in Douglas-fir seedlings. International Journal of Plant Sciences, 160,529-534. |
[31] | Saxe H, Cannel MGR, Johnsen O, Ryan MG, Vourlitis G (1998). Tree and forest functioning in an enriched CO 2 atmosphere. New Phytologist, 139,369-400. |
[32] | Taiz L, Zeiger E (1998). Plant Physiology 2nd edn.Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA, 518. |
[33] | Usami T, Lee J, Oikawa T (2001). Interactive effects of increased temperature and CO 2 on the growth of Quercus myrsinaefolia saplings. Plant, Cell and Environment, 24,1007-1019. |
[34] | Wang KY, Kellomäki S, Zha T (2003). Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year-old pine trees after a four-year exposure to carbon dioxide and temperature elevation. Photosynthetica, 41,167-175. |
[35] | Yin HJ (尹华军), Liu Q (刘庆) (2005). Seed rain and soil seed banks of Picea asperata in subalpine spruce forests, western Sichuan, China. Acta Phytoecologica Sinica (植物生态学报), 29,108-115. (in Chinese with English abstract) |
[36] | Yin HJ, Liu Q, Lai T (2008). Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research, 23,459-469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn