Chin J Plant Ecol ›› 2009, Vol. 33 ›› Issue (6): 1044-1055.DOI: 10.3773/j.issn.1005-264x.2009.06.004
Special Issue: 生态系统碳水能量通量; 碳循环
• Original article • Previous Articles Next Articles
ZHANG Li1,2, YU Gui-Rui1,*(), LUO Yiqi, HE Hong-Lin3, ZHANG Lei-Ming1
Received:
2009-03-02
Accepted:
2009-05-15
Online:
2009-03-02
Published:
2021-04-29
Contact:
YU Gui-Rui
ZHANG Li, YU Gui-Rui, LUO Yiqi, HE Hong-Lin, ZHANG Lei-Ming. CARBON CYCLE MODELING OF A BROAD-LEAVED KOREAN PINE FOREST IN CHANGBAI MOUNTAIN OF CHINA USING THE MODEL-DATA FUSION APPROACH[J]. Chin J Plant Ecol, 2009, 33(6): 1044-1055.
参数 Parameter | 定义 Definition | 值域 Range (a) | |
---|---|---|---|
最小值 Lower limit | 最大值 Upper limit | ||
τ1 | 碳在“叶生物量”库的滞留时间 Residence time of C in pool “foliage biomass” (X1) | 1.27 | 47.35 |
τ2 | 碳在“细根生物量”库的滞留时间 Residence time of C in pool “fine root biomass” (X2) | 0.93 | 15.57 |
τ3 | 碳这“木质生物量”库的滞留时间 Residence time of C in pool “woody biomass” (X3) | 10.00 | 110.47 |
τ4 | 碳在“代谢凋落物”库的滞留时间 Residence time of C in pool “metabolic litter” (X4) | 0.10 | 0.50 |
τ5 | 碳这“结构凋落物”库的滞留时间 Residence time of C in pool “structural litter” (X5) | 0.10 | 5.00 |
τ6 | 碳在“微生物”到库的滞留时间 Residence time of C in pool “microbes” (X6) | 0.04 | 1.00 |
τ7 | 碳在“慢性土壤有机质”库的滞留时间 Residence time of C in pool “slow SOM” (X7) | 6.43 | 120.16 |
τ8 | 碳在“惰性土壤有机质”库的滞留时间 Residence time of C in pool “passive SOM” (X8) | 300.08 | 1 999.80 |
Table 1 Definition and range of carbon residence time
参数 Parameter | 定义 Definition | 值域 Range (a) | |
---|---|---|---|
最小值 Lower limit | 最大值 Upper limit | ||
τ1 | 碳在“叶生物量”库的滞留时间 Residence time of C in pool “foliage biomass” (X1) | 1.27 | 47.35 |
τ2 | 碳在“细根生物量”库的滞留时间 Residence time of C in pool “fine root biomass” (X2) | 0.93 | 15.57 |
τ3 | 碳这“木质生物量”库的滞留时间 Residence time of C in pool “woody biomass” (X3) | 10.00 | 110.47 |
τ4 | 碳在“代谢凋落物”库的滞留时间 Residence time of C in pool “metabolic litter” (X4) | 0.10 | 0.50 |
τ5 | 碳这“结构凋落物”库的滞留时间 Residence time of C in pool “structural litter” (X5) | 0.10 | 5.00 |
τ6 | 碳在“微生物”到库的滞留时间 Residence time of C in pool “microbes” (X6) | 0.04 | 1.00 |
τ7 | 碳在“慢性土壤有机质”库的滞留时间 Residence time of C in pool “slow SOM” (X7) | 6.43 | 120.16 |
τ8 | 碳在“惰性土壤有机质”库的滞留时间 Residence time of C in pool “passive SOM” (X8) | 300.08 | 1 999.80 |
参数 Parameter | 众数 Mode | 平均值 Mean | 标准差 Standard deviation | 90%置信区间 90% confidence interval |
---|---|---|---|---|
τ1 | 1.78 | 1.79 | 0.15 | (1.55, 2.05) |
τ2 | 1.23 | 1.25 | 0.10 | (1.09, 1.42) |
τ3 | 105.63 | 95.86 | 9.81 | (77.31, 108.96) |
τ4 | 0.16 | 0.21 | 0.07 | (0.11, 0.36) |
τ5 | 0.27 | 0.30 | 0.11 | (0.16, 0.49) |
τ6 | 0.26 | 0.30 | 0.09 | (0.17, 0.47) |
τ7 | 10.73 | 11.48 | 2.50 | (8.17, 16.17) |
τ8 | - | 1 133.30 | 462.15 | (408.53, 1 878.80) |
Table 2 Posterior statistic of carbon residence times (unit: a)
参数 Parameter | 众数 Mode | 平均值 Mean | 标准差 Standard deviation | 90%置信区间 90% confidence interval |
---|---|---|---|---|
τ1 | 1.78 | 1.79 | 0.15 | (1.55, 2.05) |
τ2 | 1.23 | 1.25 | 0.10 | (1.09, 1.42) |
τ3 | 105.63 | 95.86 | 9.81 | (77.31, 108.96) |
τ4 | 0.16 | 0.21 | 0.07 | (0.11, 0.36) |
τ5 | 0.27 | 0.30 | 0.11 | (0.16, 0.49) |
τ6 | 0.26 | 0.30 | 0.09 | (0.17, 0.47) |
τ7 | 10.73 | 11.48 | 2.50 | (8.17, 16.17) |
τ8 | - | 1 133.30 | 462.15 | (408.53, 1 878.80) |
Fig. 3 Comparison of modeled (lines) and observed (circles) daily Gross primary productivity (GPP) from year 2003 to 2005 in CBS broad-leaved Korean pine forest in the panel a. The panel b shows the fitness of modeled and observed GPP derived fromNEPmeasurements for days without missing value.
Fig. 4 Comparison between observed (circles) and modeled variables using 10 000 samples of posterior parameters for year 2003~2005. Gray regions indicate the standard deviation around the mean (real lines) of 10 000 predicted values. Dash lines indicate 90% confidence intervals.
Fig. 5 Modeled cumulative soil respiration and NEP from year 2003 to 2005. Gray regions indicate the standard deviation around the mean (real lines) of 10 000 predicted values. Dash lines indicate 90% confidence intervals
模拟量 Variable | 平均值 Mean | 标准差 Standard deviation | 众数 Mode | 90%置信区间 90% confidence interval |
---|---|---|---|---|
NEP年总量Annual NEP (g C·m-2·a-1) | 163 | 12 | 162 | (142, 183) |
土壤呼吸年总量 Annual soil respiration (g C·m-2·a-1) | 721 | 14 | 718 | (699, 747) |
植物碳Vegetation carbon (g C·m-2) | 21 292 | 215.69 | 21 564 | (20 878, 21 563) |
土壤有机碳Soil organic carbon (g C·m-2) | 7 240 | 305 | 7 244 | (6 756, 7 749) |
Table 3 Prediction of carbon stocks and fluxes of CBS broad-leaved Korean pine forest in 2020
模拟量 Variable | 平均值 Mean | 标准差 Standard deviation | 众数 Mode | 90%置信区间 90% confidence interval |
---|---|---|---|---|
NEP年总量Annual NEP (g C·m-2·a-1) | 163 | 12 | 162 | (142, 183) |
土壤呼吸年总量 Annual soil respiration (g C·m-2·a-1) | 721 | 14 | 718 | (699, 747) |
植物碳Vegetation carbon (g C·m-2) | 21 292 | 215.69 | 21 564 | (20 878, 21 563) |
土壤有机碳Soil organic carbon (g C·m-2) | 7 240 | 305 | 7 244 | (6 756, 7 749) |
Fig. 6 Histograms of predicted annual NEP under ambient temperature (Ta) and increased temperature by 10% (Ta+10%) and 20% (Ta+20%) (a, d, g: 2003; b, e, h: 2004; e, f, i: 2005)
[1] | Braswell BH, William JS, Linder E, Schimel DS (2005). Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global Change Biology, 11,335-355. |
[2] | Cao MK, Yu GR, Liu JY, Li K (2005). Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle. Science in China Series D: Earth Sciences, 48(Suppl. I),17-32. |
[3] | Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002). Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agriculture and Forest Meteorology, 113,3-19. |
[4] | Gelman A, Rubin DB (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7,457-511. |
[5] | Global Carbon Project (2003). Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No.1; Global Carbon Project Report No.1, Canberra. |
[6] | Hastings WK (1970). Monte Carlo sampling methods using Markov chain and their applications. Biometrika, 57,97-109. |
[7] | Ji J (1995). A climate-vegetation interaction modelsimu- lating the physical and biological processes at the surface. Journal of Biogeography, 22,445-451. |
[8] | Law B E, Sun O J, Campbell J, Van Tuyl S, Thornton P (2003). Changes in Carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology, 9,510-524. |
[9] | Li H, Wu J (2006). Uncertainty analysis in ecological studies:An overview. In: Wu J, Jones KB, Li H, Loucks OL. Scaling and uncertainty analysis in ecology: Methods and applications, Springer, Dordrecht, The Netherlands, 43-64. |
[10] | Luo Y, White LW, Ganadell JG, DeLucia EH, Ellsworth DS, Finzi A, Lichter J, Schlesinger WH (2003). Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach. Global Biogeochemical Cycles, 17, 1021, doi: 10.1029/ 2002GB001923. |
[11] | Luo Y, Wu LH, Andrews JA, White L, Matamala R, Schafer KVR, Schelesinger WH (2001). Elevated CO 2 differentiates ecosystem carbon processes: deconvolution analysis of Duke forest FACE data. Ecological Monographs, 71,357-376. |
[12] | Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). Equation of state calculation by fast computer machines. Journal of Chemical Physics, 21,1087-1092. |
[13] | Parton WJ, Schimel DS, Cole CV, Ojima DS (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51,1173-1179. |
[14] | Parton WJ, Stewardt WB, Cole CV (1988). Dynamics of C, N, P and S in grassland soils: a model. Biogeochem- istry, 5,109-131. |
[15] | Post WM, Pastor J, Zinke PJ, Zinke PJ, Stangenberger AG (1985). Global patterns of soil nitrogen storage. Nature, 317,613-616. |
[16] |
Raupach MR, Rayner PJ, Barrett DJ, Defriess RS, Heimann M, Ojima DS, Quegan S, Schmullius CC (2005). Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Global Change Biology, 11,378-397.
DOI URL |
[17] | Shan JP (单建平), Tao DL (陶大立), Wang M (王淼), Zhao SD (赵士洞) (1993). Fine roots turnover in a broad- leaved Korean forest of Chaagbal mountain. Chinese Journal of Applied Ecology (应用生态学报), 4,241-245. (in Chinese with English abstract) |
[18] |
Trudinger CM, Raupach MR, Rayner PJ, Kattge J, Liu Q, Pak B, Reichstein M, Rezullo L, Richardson AD, Roxburgh SH, Styles J, Wang YP, Briggs P, Barrett D, Nikolova S (2007). OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models. Journal of Geophysical Research 12,G02027, doi: 10.1029/2006 JG000367.
DOI URL PMID |
[19] | Wang XC, Wang CK, Yu GR (2008). Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements. Science in China Series D: Earth Sciences, 38,1129-1143. |
[20] | Wang YP, Leuning R, Cleugh HA, Coppin PA (2001). Parameter estimation in surface exchange models using nonlinear inversion: How many parameters can we estimate and which measurements are most useful? Global Change Biology, 7,495-510. |
[21] | White L, White F, Luo Y, Xu T (2006). Estimation of parameters in carbon sequestration models from net ecosystem exchange data. Applied Mathematics and Computation, 181,864-879. |
[22] | Williams M, Schwarz PA, Law BE, Irvine J, Kurpius MR (2005). An improved analysis of forest carbon dynamics using data assimilation. Global Change Biology, 11,89-105. |
[23] | Wu JB, Guan DX, Sun XM, Zhang M, Shi TT, Han SJ, Jin CJ (2006). Photosynthetic characteristics of dominant tree species and canopy in the broadleaved Korean pine forest of Changbai Mountains. Science in China Series D: Earth Sciences, 49(Suppl. II),89-98. |
[24] | Xu T, White L, Hui D, Luo Y (2006). Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20, GB2007, doi: 10.1029/2005GB002468. |
[25] | Xu ZB (徐振邦), Li X (李昕), Dai HC (戴洪才) (1985). Study on the biomass and productivity of broad leaved-Korean pine forest at Changbai Mountain. Forest Ecosystem Research (森林生态系统研究), 5,33-47. (in Chinese) |
[26] | Yang LY (杨丽韫), Li WH (李文华) (2003). The underground root biomass and C storage in different forest ecosystems of Changbai Mountains in China, Journal of Natural Resources(自然资源学报), 18,204-209. (in Chinese with English abstract) |
[27] | Yang LY (杨丽韫), Li WH (李文华) (2005). Fine root distribution and turn over in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China Journal of Beijing Forest University (北京林业大学学报), 27(2),1-5. (in Chinese with English abstract) |
[28] | Yu GR, Fu YL, Sun XM, Wen XF, Zhang LM (2006). Recent progress and future directions of ChinaFLUX. Science in China Series D: Earth Sciences, 49(Suppl. II),1-23. |
[29] |
Zhang L, Yu GR, Luo Yiqi, Gu FX, Zhang LM (2008). Influences of error distributions of net ecosystem exchange on parameter estimation of a process-based terrestrial model: a case of broad-leaved Korean pine mixed forest in Changbaishan, China. Acta Ecologica Sinica, 28,3017-3026.
DOI URL |
[30] | Zhang LM (张雷明) (2006). Ecophysiological Controls on Seasonal Variations of Ecosystem Carbon Exchange of Typical Forest Ecosystems along NSTEC(中国东部南北森林样带典型生态系统碳收支特征及其生理生态学机制). PhD dissertation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing. (in Chinese) |
[31] | Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Song X, Liu YF, Guan DX, Yan JH, Zhang DQ (2006). Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China. Science in China Series D: Earth Sciences, 49(Suppl. II),47-62. |
[32] | Zhao XS (赵晓松) (2005). Estimation of Net Ecosystem Productivity by Eddy Covariance and Biometry in the Mixed Forest of Broad-leaved and Korean-pine in Changbai Mountain (涡动相关法估算森林生产力及与测树学方法的比较). Master dissertation, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang. (in Chinese) |
[33] |
Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006). Old-growth forests can accumulate carbon in soils. Science, 314,1417.
DOI URL PMID |
[34] | Zhou T, Luo Y (2008). Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States, Global Biogeochemical Cycles 22,GB3032, doi: 10.1029/2007GB002939. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn