Chin J Plant Ecol ›› 2009, Vol. 33 ›› Issue (6): 1112-1124.DOI: 10.3773/j.issn.1005-264x.2009.06.011
• Original article • Previous Articles Next Articles
LI Yang1,2, HUANG Jian-Hui1,*()
Received:
2009-02-16
Accepted:
2009-05-15
Online:
2009-02-16
Published:
2021-04-29
Contact:
HUANG Jian-Hui
LI Yang, HUANG Jian-Hui. PHOTOSYNTHETIC PHYSIOLOGICAL RESPONSES OF GLYCYRRHIZA URALENSISUNDER DIFFERENT WATER AND NUTRIENT SUPPLIES IN KUBUQI DESERT, CHINA[J]. Chin J Plant Ecol, 2009, 33(6): 1112-1124.
Fig. 2 Diurnal changes of net photosynthetic rate (Pn) (A), stomatal conductance (Gs) (B), intercellular CO2 concentration, (Ci) (C), photosynthetic water use efficiency (PWUE) (D), transipiration rate (Tr) (E), and stomatal limitation value (Ls) (F) in Glycyrrhiza uranlensis seedlings under different water and nutrient supplies (mean±SE, n=3)
变异来源 Source of variation | 自由度 df | 净光合速率 Pn (μmol CO2·m-2·s-1) | 气孔导度 Gs (mmol H2O·m-2· s-1) | 胞间CO2浓度 Ci (μmol· mol-1) | 光合水分利用效率 PWUE (μmol CO2·mmol H2O) | 蒸腾速率 Tr (mmol H2O·m-2 ·s -1) | 气孔限制值 Ls | 最大净光合速率 Pmax (μmol CO2·m-2 ·s -1) | 表观量子效率 AQE (CO2·photon-1) | 暗呼吸速率 Rd (μmol· m-2·s-1) | 光补偿点 LCP (mmol· m-2·s-1) | 光饱和点 LSP (mmol· m-2·s-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
水分 Water | 3 | 27.575*** | 16.544*** | 2.018 | 32.004*** | 1.834 | 2.480 | 5.627** | 3.037* | 1.688 | 12.464*** | 2.418 |
养分 Nutrient | 3 | 0.387 | 0.880 | 0.726 | 1.371 | 0.499 | 0.683 | 8.977*** | 2.852 | 2.219 | 2.889 | 13.789*** |
水分×养分 Water×Nutrient | 9 | 2.206* | 2.025 | 1.999 | 2.594* | 1.594 | 1.983 | 1.616 | 2.677* | 1.995 | 6.727*** | 2.553* |
Table 1 Effects of water supply, nutrient addition and their interactions on gas exchange characteristics and A-PAR curve parameters of Glycyrrhiza uranlensis seedlings
变异来源 Source of variation | 自由度 df | 净光合速率 Pn (μmol CO2·m-2·s-1) | 气孔导度 Gs (mmol H2O·m-2· s-1) | 胞间CO2浓度 Ci (μmol· mol-1) | 光合水分利用效率 PWUE (μmol CO2·mmol H2O) | 蒸腾速率 Tr (mmol H2O·m-2 ·s -1) | 气孔限制值 Ls | 最大净光合速率 Pmax (μmol CO2·m-2 ·s -1) | 表观量子效率 AQE (CO2·photon-1) | 暗呼吸速率 Rd (μmol· m-2·s-1) | 光补偿点 LCP (mmol· m-2·s-1) | 光饱和点 LSP (mmol· m-2·s-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
水分 Water | 3 | 27.575*** | 16.544*** | 2.018 | 32.004*** | 1.834 | 2.480 | 5.627** | 3.037* | 1.688 | 12.464*** | 2.418 |
养分 Nutrient | 3 | 0.387 | 0.880 | 0.726 | 1.371 | 0.499 | 0.683 | 8.977*** | 2.852 | 2.219 | 2.889 | 13.789*** |
水分×养分 Water×Nutrient | 9 | 2.206* | 2.025 | 1.999 | 2.594* | 1.594 | 1.983 | 1.616 | 2.677* | 1.995 | 6.727*** | 2.553* |
项目 Item | 实验处理 Treatment | O | N | P | NP |
---|---|---|---|---|---|
净光合速率Pn (μmol CO2·m-2·s-1) | W1 | 5.79±1.40Aa | 2.49±0.78Aa | 9.85±0.84ABb | 2.14±1.41Aa |
W2 | 6.14±2.47Aa | 10.43±2.68Ba | 7.33±1.14Aa | 7.04±3.64ABa | |
W3 | 13.65±0.63Ba | 18.92±0.35Ba | 13.44±2.98BCa | 13.34±2.87Ca | |
W4 | 16.72±0.96Bb | 12.19±1.72Ba | 15.55±0.42Cb | 20.59±0.37Cc | |
气孔导度 Gs (mmol H2O·m-2 ·s -1) | W1 | 0.19±0.12Aa | 0.07±0.02Aa | 0.16±0.01Aa | 0.06±0.01Aa |
W2 | 0.15±0.01Aa | 0.18±0.03Ba | 0.16±0.01Ba | 0.13±0.02Ba | |
W3 | 0.23±0.01Aa | 0.23±0.04ABa | 0.21±0.03BCa | 0.17±0.04Ca | |
W4 | 0.28±0.02Aa | 0.20±0.03ABa | 0.29±0.03Ba | 0.38±0.02Ca | |
胞间CO2浓度Ci (μmol·mol-1) | W1 | 267.43±42.46Aa | 303.57±3.14Aa | 222.53±4.48Aa | 319.77±35.14Aa |
W2 | 303.47±24.24Aa | 274.60±11.55Aa | 287.50±15.89Aa | 284.97±30.61Aa | |
W3 | 272.37±4.35Aa | 252.63±7.14Aa | 263.80±10.18Aa | 240.10±3.38Aa | |
W4 | 272.60±2.00Aa | 269.67±8.14Aa | 273.90±6.77Aa | 263.93±2.33Aa | |
光合水分利用效率PWUE (μmol CO2·mmol H2O) | W1 | 1.57±0.51Aa | 1.18±0.05Aa | 2.86±0.09Ba | 1.88±0.69Aa |
W2 | 1.54±0.58Aa | 2.13±0.24Ba | 1.75±0.36Aa | 1.73±0.69Aa | |
W3 | 2.85±0.14Aa | 4.23±0.81Ca | 2.71±0.32Ba | 3.13±0.08Ba | |
W4 | 5.16±0.23Bc | 4.25±0.09Db | 3.55±0.17Ba | 3.57±0.11Ba | |
蒸腾速率Tr (mmol H2O·m-2·s-1) | W1 | 3.91±0.74Aa | 2.10±0.63Aa | 3.45±0.31Aa | 1.89±0.35Aa |
W2 | 3.91±0.21Aa | 4.75±0.83Aa | 4.28±0.29Aa | 3.60±0.59Aa | |
W3 | 4.80±0.05Aa | 4.75±0.73Aa | 4.87±0.53Aa | 4.25±0.88Aa | |
W4 | 3.25±0.19Aa | 2.87±0.42Aa | 4.41±0.35Aa | 5.78±0.19Aa | |
气孔限制值Ls | W1 | 0.30±0.11Aa | 0.20±0.01Aa | 0.42±0.01Aa | 0.17±0.09Aa |
W2 | 0.21±0.06Aa | 0.29±0.03Aa | 0.25±0.04Aa | 0.25±0.08Aa | |
W3 | 0.30±0.01Aa | 0.35±0.02Aa | 0.32±0.03Aa | 0.38±0.01Aa | |
W4 | 0.30±0.01Aa | 0.31±0.02Aa | 0.30±0.02Aa | 0.32±0.01Aa |
Table 2 The net photosynthesis rate (Pn), stomatal conductance (Gs), internal CO2 concentration (Ci), photosynthetic water use efficiency (PWUE), transipiration rate (Tr), and stomotal limitation value (Ls) of Glycyrrhiza uralensis grown under different water supplies and nutrient additions (mean±SE, n=3)
项目 Item | 实验处理 Treatment | O | N | P | NP |
---|---|---|---|---|---|
净光合速率Pn (μmol CO2·m-2·s-1) | W1 | 5.79±1.40Aa | 2.49±0.78Aa | 9.85±0.84ABb | 2.14±1.41Aa |
W2 | 6.14±2.47Aa | 10.43±2.68Ba | 7.33±1.14Aa | 7.04±3.64ABa | |
W3 | 13.65±0.63Ba | 18.92±0.35Ba | 13.44±2.98BCa | 13.34±2.87Ca | |
W4 | 16.72±0.96Bb | 12.19±1.72Ba | 15.55±0.42Cb | 20.59±0.37Cc | |
气孔导度 Gs (mmol H2O·m-2 ·s -1) | W1 | 0.19±0.12Aa | 0.07±0.02Aa | 0.16±0.01Aa | 0.06±0.01Aa |
W2 | 0.15±0.01Aa | 0.18±0.03Ba | 0.16±0.01Ba | 0.13±0.02Ba | |
W3 | 0.23±0.01Aa | 0.23±0.04ABa | 0.21±0.03BCa | 0.17±0.04Ca | |
W4 | 0.28±0.02Aa | 0.20±0.03ABa | 0.29±0.03Ba | 0.38±0.02Ca | |
胞间CO2浓度Ci (μmol·mol-1) | W1 | 267.43±42.46Aa | 303.57±3.14Aa | 222.53±4.48Aa | 319.77±35.14Aa |
W2 | 303.47±24.24Aa | 274.60±11.55Aa | 287.50±15.89Aa | 284.97±30.61Aa | |
W3 | 272.37±4.35Aa | 252.63±7.14Aa | 263.80±10.18Aa | 240.10±3.38Aa | |
W4 | 272.60±2.00Aa | 269.67±8.14Aa | 273.90±6.77Aa | 263.93±2.33Aa | |
光合水分利用效率PWUE (μmol CO2·mmol H2O) | W1 | 1.57±0.51Aa | 1.18±0.05Aa | 2.86±0.09Ba | 1.88±0.69Aa |
W2 | 1.54±0.58Aa | 2.13±0.24Ba | 1.75±0.36Aa | 1.73±0.69Aa | |
W3 | 2.85±0.14Aa | 4.23±0.81Ca | 2.71±0.32Ba | 3.13±0.08Ba | |
W4 | 5.16±0.23Bc | 4.25±0.09Db | 3.55±0.17Ba | 3.57±0.11Ba | |
蒸腾速率Tr (mmol H2O·m-2·s-1) | W1 | 3.91±0.74Aa | 2.10±0.63Aa | 3.45±0.31Aa | 1.89±0.35Aa |
W2 | 3.91±0.21Aa | 4.75±0.83Aa | 4.28±0.29Aa | 3.60±0.59Aa | |
W3 | 4.80±0.05Aa | 4.75±0.73Aa | 4.87±0.53Aa | 4.25±0.88Aa | |
W4 | 3.25±0.19Aa | 2.87±0.42Aa | 4.41±0.35Aa | 5.78±0.19Aa | |
气孔限制值Ls | W1 | 0.30±0.11Aa | 0.20±0.01Aa | 0.42±0.01Aa | 0.17±0.09Aa |
W2 | 0.21±0.06Aa | 0.29±0.03Aa | 0.25±0.04Aa | 0.25±0.08Aa | |
W3 | 0.30±0.01Aa | 0.35±0.02Aa | 0.32±0.03Aa | 0.38±0.01Aa | |
W4 | 0.30±0.01Aa | 0.31±0.02Aa | 0.30±0.02Aa | 0.32±0.01Aa |
项目 Item | 实验处理 Treatment | CK | N | P | NP |
---|---|---|---|---|---|
最大净光合速率 Pmax (μmol CO2·m-2 ·s -1) | W1 | 7.44±2.32Aa | 4.65±1.56Aa | 9.94±2.25Aa | 3.59±1.09Aa |
W2 | 9.16±1.75Aa | 6.68±1.81Aa | 15.73±2.56Ab | 6.34±1.20ABa | |
W3 | 13.93±1.57Ab | 6.55±0.71Aa | 13.60±0.59Ab | 8.07±0.90BCa | |
W4 | 13.13±4.05Aa | 10.22±0.84Aa | 10.10±0.35Aa | 11.07±0.73Ca | |
表观量子效率 AQE (CO2·photon-1) | W1 | 0.0375±0.0107Aa | 0.0266±0.0024Aa | 0.0382±0.0032Aa | 0.0259±0.0033Aa |
W2 | 0.0444±0.0125Aa | 0.0575±0.0060Ba | 0.0408±0.0033Aa | 0.0327±0.0046Aa | |
W3 | 0.0320±0.0084Aa | 0.0616±0.0074Ba | 0.0400±0.0093Aa | 0.0500±0.0092Aa | |
W4 | 0.0520±0.0028Ab | 0.0485±0.0104ABb | 0.0194±0.0010Aa | 0.0448±0.0025Ab | |
暗呼吸速率 Rd (μmol·m-2·s-1) | W1 | -2.99±0.99Aa | -1.63±0.30Aa | -1.74±0.22Aa | -1.17±0.25Aa |
W2 | -1.56±0.43Aa | -2.00±0.20Aa | -2.37±0.48Aa | -1.61±0.13Aa | |
W3 | -1.91±0.32Aa | -2.02±0.33Aa | -1.22±0.26Aa | -1.58±0.21Aa | |
W4 | -1.37±0.15Aa | -1.92±0.19Aa | -0.72±0.09Aa | -1.68±0.09Aa | |
光补偿点 LCP (mmol·m-2·s-1) | W1 | 76.60±7.50Bb | 60.30±5.93Bab | 45.73±5.00ABa | 44.37±5.72ABa |
W2 | 37.13±5.25Aa | 36.47±7.68Aa | 57.10±6.66Ba | 50.13±2.82Ba | |
W3 | 63.30±7.08Bb | 32.57±1.50Aa | 31.60±3.64Aa | 32.53±3.64Aa | |
W4 | 26.47±3.07Aa | 41.97±6.43Ba | 36.73±2.62Aa | 37.50±1.16Aa | |
光饱和点 LSP (mmol·m-2·s-1) | W1 | 280.00±21.17Aa | 226.67±51.61Aa | 301.00±50.39Aa | 177.00±38.22Aa |
W2 | 285.00±65.25Aab | 162.00±56.03Aa | 437.33±35.63Ab | 247.00±37.40Aa | |
W3 | 544.67±92.96Bb | 144.67±23.67Aa | 427.67±123.52Aab | 213.33±57.48Aa | |
W4 | 273.67±60.92Aa | 271.67±54.14Aa | 559.00±29.70Ab | 266.00±32.08Aa |
Table 3 The maximum net photosynthesis rate (Pmax), apparent quantum efficiency (AQE), dark respiration rate (Rd), light compensation point (LCP), and light saturation point (LSP) of Glycyrrhiza uralensisgrown under different water supplies and nutrient additions (mean±SE, n=3)
项目 Item | 实验处理 Treatment | CK | N | P | NP |
---|---|---|---|---|---|
最大净光合速率 Pmax (μmol CO2·m-2 ·s -1) | W1 | 7.44±2.32Aa | 4.65±1.56Aa | 9.94±2.25Aa | 3.59±1.09Aa |
W2 | 9.16±1.75Aa | 6.68±1.81Aa | 15.73±2.56Ab | 6.34±1.20ABa | |
W3 | 13.93±1.57Ab | 6.55±0.71Aa | 13.60±0.59Ab | 8.07±0.90BCa | |
W4 | 13.13±4.05Aa | 10.22±0.84Aa | 10.10±0.35Aa | 11.07±0.73Ca | |
表观量子效率 AQE (CO2·photon-1) | W1 | 0.0375±0.0107Aa | 0.0266±0.0024Aa | 0.0382±0.0032Aa | 0.0259±0.0033Aa |
W2 | 0.0444±0.0125Aa | 0.0575±0.0060Ba | 0.0408±0.0033Aa | 0.0327±0.0046Aa | |
W3 | 0.0320±0.0084Aa | 0.0616±0.0074Ba | 0.0400±0.0093Aa | 0.0500±0.0092Aa | |
W4 | 0.0520±0.0028Ab | 0.0485±0.0104ABb | 0.0194±0.0010Aa | 0.0448±0.0025Ab | |
暗呼吸速率 Rd (μmol·m-2·s-1) | W1 | -2.99±0.99Aa | -1.63±0.30Aa | -1.74±0.22Aa | -1.17±0.25Aa |
W2 | -1.56±0.43Aa | -2.00±0.20Aa | -2.37±0.48Aa | -1.61±0.13Aa | |
W3 | -1.91±0.32Aa | -2.02±0.33Aa | -1.22±0.26Aa | -1.58±0.21Aa | |
W4 | -1.37±0.15Aa | -1.92±0.19Aa | -0.72±0.09Aa | -1.68±0.09Aa | |
光补偿点 LCP (mmol·m-2·s-1) | W1 | 76.60±7.50Bb | 60.30±5.93Bab | 45.73±5.00ABa | 44.37±5.72ABa |
W2 | 37.13±5.25Aa | 36.47±7.68Aa | 57.10±6.66Ba | 50.13±2.82Ba | |
W3 | 63.30±7.08Bb | 32.57±1.50Aa | 31.60±3.64Aa | 32.53±3.64Aa | |
W4 | 26.47±3.07Aa | 41.97±6.43Ba | 36.73±2.62Aa | 37.50±1.16Aa | |
光饱和点 LSP (mmol·m-2·s-1) | W1 | 280.00±21.17Aa | 226.67±51.61Aa | 301.00±50.39Aa | 177.00±38.22Aa |
W2 | 285.00±65.25Aab | 162.00±56.03Aa | 437.33±35.63Ab | 247.00±37.40Aa | |
W3 | 544.67±92.96Bb | 144.67±23.67Aa | 427.67±123.52Aab | 213.33±57.48Aa | |
W4 | 273.67±60.92Aa | 271.67±54.14Aa | 559.00±29.70Ab | 266.00±32.08Aa |
[1] | Aerts R, Chapin Ⅲ FS (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30,1-67. |
[2] | Anyia AO, Herzog H (2004). Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. European Journal of Agronomy, 20,327-339. |
[3] |
Bilger W, Björkman O, Thayer SS (1989). Light induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiology, 91,542-551.
DOI URL PMID |
[4] | Chapin Ⅲ FS, Bloom AJ, Field CB, Waring RH (1987). Plant responses to multiple environmental factors. BioScience, 37,49-56. |
[5] |
Charles RW, Mark AA (2004). Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science, 9,270-274.
DOI URL PMID |
[6] |
Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought–from genes to the whole plant. Functional Plant Biology, 30,239-264.
DOI URL PMID |
[7] |
Chaves MM, Oliveira MM (2004). Mechanisms underlying plant resilience to water deficits: prospects for water- saving agriculture. Journal of Experimental Botany, 55,2365-2384.
URL PMID |
[8] | Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53,65-75. |
[9] | Clavel D, Drame NK, Roy-Macauley H, Braconnier S, Laffray D (2005). Analysis of early responses to drought associated with field drought adaptation in four Sahelian groundnut ( Arachis hypogaea L.) cultivars. Environmental and Experimental Botany, 54,219-230. |
[10] | Commissione Redactorum Florae Intramogolicae (内蒙古植物志编辑委员会) (1994). Flora Intramongolica, Tomus5 (内蒙古植物志). Inner Mongolia People Press, Huhhot, 245. (in Chinese) |
[11] |
Cornic G, Fresneau C (2002). Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89,887-894.
DOI URL PMID |
[12] | Cui XY (崔晓阳), Song JF (宋金凤), Zhang YH (张艳华). (2004). Some photosynthetic characteristics of Fraxinus mandshurica seedlings grown under different soil water potentials. Acta Phytoecologica Sinica (植物生态学报), 28,794-802. (in Chinese with English abstract) |
[13] | DaMatta FM, Loos RA, Silva EA, Loureiro ME, Ducatti C (2002). Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot- grown Coffea canephora Pierre. Trees, 16,555-558. |
[14] |
Davies FS, Flore JA (1986). Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry ( Vaccinium ashei Reade). Plant Physiology, 81,289-292.
DOI URL PMID |
[15] | Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita (中国科学院中国植物志编辑委员会) (1998). Flora Reipulicae Popularis Sinicae, Tomus 42 (中国植物志). Science Press, Beijing, 167. (in Chinese) |
[16] | Drenovsky RE, Richards JH (2004). Critical N: P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil, 259,59-69. |
[17] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic (CO 2) assimilation in leaves of C 3 species. Planta, 149,78-90.
DOI URL PMID |
[18] | Field C, Mooney HA (1986). On the economy of plant form and function. In: Givnish TJ ed. Cambridge University Press, Cambridge, UK, 25-55. |
[19] | Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006). Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 127,343-352. |
[20] | Flexas J, Medrano H (2002). Drought-inhibition of photosynthesis in C 3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 89,S183-189. |
[21] | Fu KZ (傅克治) (1989). On the Transforming of Chinese Liquorice from Wild Growing into Domestication (中国甘草野生变家植). Press of Northeast Forest University,Harbin. (in Chinese) |
[22] | Galmés J, Medrano H, Flexas J (2006). Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. Jouranl of Experimental Botany, 57,3659-3667. |
[23] | Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO 2 flux in a grassland ecosystem. Global Change Biology, 11,322-334. |
[24] | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001). Climate Change 2001: The Scientific Basis. Cambridge Unversity Press,UK. |
[25] | Jia Y, Gray VM (2004). Interrelationships between nitrogen supply and photosynthetic parameters in Vicia faba L. Photosynthetica, 41,605-610. |
[26] |
Korol RL, Kirschbaum MUF, Farquhar GD, Jeffreys M (1999). Effects of water status and soil fertility on the C-isotope signature in Pinus radiate. Tree Physiology, 19,551-562.
DOI URL PMID |
[27] | Lambers H, Chapin FS, Pons TL (1998). Plant Physiological Ecology. Springer-Verlag,New York. |
[28] |
Lawlor DW, Cornic G (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25,275-294.
URL PMID |
[29] | Li CS (李朝生), Ci LJ (慈龙骏), Yu CT (于春堂), Yang XH (杨晓晖), Wang Z (王忠), Bai F (白飞) (2005). Spatial variability of soil nutrients and salt in desert- riverside ecotone. Journal of Agro-Environment Science (农业环境科学学报), 24,643-647. (in Chinese with English abstract) |
[30] |
Loustau D, Brahim MB, Gaudillère J, Dreyer E (1999). Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiology, 19,707-715.
DOI URL PMID |
[31] | Morgan JA (1986). The effects of N nutrition on the water relations and gas exchange characteristics of wheat (Triticum aestivum L.). Plant Physiologist, 80,52-58. |
[32] |
Niu SL, Yuan ZY, Zhang YF, Liu WX, Zhang L, Huang JH, Wan SQ (2005). Photosynthetic responses of C 3 and C 4 species to seasonal water availability and competition. Journal of Experimental Botany, 56,2867-2876.
URL PMID |
[33] | Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002). Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. Jouranl of Experimental Botany, 53,989-1004. |
[34] |
Radin JW, Ackerson RC (1981). Water relations of cotton plants under nitrogen deficiency. III. Stomatal conductance, photosynthesis, and abscisic acid accumulation during drought. Plant Physiology, 67,115-119.
DOI URL PMID |
[35] |
Ripullone F, Lauteri M, Grassi G, Amato M, Borghetti M (2004). Variation in nitrogen supply changes water-use efficiency of Pseudotsuga menziesii and Populus × euroamericana; a comparison of three approaches to determine water-use efficiency. Tree Physiology, 24,671-679.
DOI URL PMID |
[36] | Saneoka H, Moghaieb REA, Premachandra GS, Fujita K (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental and Experimental Botany, 52,131-138. |
[37] |
Shangguan ZP, Shao MA, Dyckmans J (2000). Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environmental and Experimental Botany, 44,141-149.
DOI URL PMID |
[38] |
Singsaas EL, Ort DR, DeLucia EH (2001). Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia, 128,15-23.
URL PMID |
[39] | Sterner RW, Elser JJ (2003). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton,USA. |
[40] |
Sugiharto B, Miyata K, Nakamoto H, Sasakawa H, Sugiyama T (1990). Regulation of expression of carbon- assimilating enzymes by nitrogen in maize leaf. Plant Physiology, 92,963-969.
DOI URL PMID |
[41] | Tang XM (唐晓敏), Wang WQ (王文全), Ma CY (马春英) (2008). Physiological drought responses of Glycyrrhiza uranlensis leaves under prolonged water stress. Journal of Agricultural University of Hebei (河北农业大学学报), 31,16-20. (in Chinese with English abstract) |
[42] | Tezara W, Mitchel VJ, Driscoll SD, Lawlor DW (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401,914-917. |
[43] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7,737-750. |
[44] | Walter L (1995). Physiological Plant Ecology3rd edn. Oxford university Press,UK. |
[45] | Wang WQ (王文全), Wu QF (吴庆丰) (2001). The Glycyrrhiza uralensis resources and cultivation techniques of China. Research & Information on Traditional Chinese Medicine (中药研究与信息), 3(12),18-20. (in Chinese) |
[46] |
West JB, HilleRisLambers J, Lee TD, Hobbie SE, Reich PB (2005). Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO 2]. New Phytologist, 167,523-530.
DOI URL |
[47] | Wise RR, Sparrow DH, Ortiz-Lopez A, Ort DR (1991). Biochemical regulation during the mid-day decline of photosynthesis in field-grown sunflower. Plant Science, 74,45-52. |
[48] | Wu FZ, Bao WK, Li LF, Wu N (2008). Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. Photosynthetica, 46,40-48. |
[49] | Wu WH (武维华) (2003). Plant Physiology(植物生理学). Science Press,Beijing,China. (in Chinese) |
[50] | Xiao CW (肖春旺), Zhou GS (周广胜), Ma FY (马风云) (2002). Effect of water supply change on morphology and growth of dominant plants in Maowusu sandland. Acta Phytoecologica Sinica (植物生态学报), 26,69-76. (in Chinese with English abstract) |
[51] | Xu DQ (许大全) (2002). Photosynthesis Efficiency (光合作用效率). Shanghai Science and Technology Press,Shanghai. (in Chinese) |
[52] | Yin CY, Berninger F, Li CY (2006). Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica, 44,62-68. |
[53] | Zhao BZ, Kondo M, Maeda M, Ozaki Y, Zhang JB (2004). Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes. Plant and Soil, 261,61-75. |
[54] | Zhao ZH (赵则海), Cao JG (曹建国), Wang WJ (王文杰), Fu YJ (付玉杰), Zu YG (祖元刚) (2005). Comparative study on the photosynthetic characteristics between the cultivated Glycyrrhiza uralensis with different age limits and the wild G.uralensis. Acta Prataculturae Sinica (草业学报), 14, 111-116. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn