Chin J Plant Ecol ›› 2008, Vol. 32 ›› Issue (5): 1166-1174.DOI: 10.3773/j.issn.1005-264x.2008.05.021
• Original article • Previous Articles Next Articles
LI Yuan-Heng1,2, WANG Zheng-Wen2,*(), MA Hui-Ling1
Received:
2008-01-25
Accepted:
2008-04-25
Online:
2008-01-25
Published:
2008-09-30
Contact:
WANG Zheng-Wen
LI Yuan-Heng, WANG Zheng-Wen, MA Hui-Ling. PATCHY CONTRAST OF HABITAT AFFECTS INTRACLONAL DIVISION OF LABOR OF POTENTILLA ANSERINA[J]. Chin J Plant Ecol, 2008, 32(5): 1166-1174.
作用因素 Factors | 地上部高度 Shoot height | 分株叶面积 Leaf area | 分株生物量Ramet biomass | 根冠比 R/S ratio | |||||||
F | p | F | p | F | p | F | p | ||||
斑块对比度 PC1) | 9.31 | <0.000 1 | 5.98 | 0.001 5 | 7.50 | 0.000 3 | 9.10 | <0.000 1 | |||
分株位置 Position2) | 49.74 | <0.000 1 | 22.24 | <0.000 1 | 2.90 | 0.095 1 | 84.64 | <0.000 1 | |||
交互作用 PC × position 3) | 9.88 | <0.000 1 | 4.74 | 0.005 7 | 1.96 | 0.133 2 | 19.16 | <0.000 1 | |||
1): df=3 2): df =1 3): df =3 p<0.05的p值以黑体显示 Values of p<0.05 are in bold |
Table 1 Two-way ANOVA for the effects of patchy contrast (PC), position and their interaction on shoot height, leaf area, ramet biomass and R/S ratio
作用因素 Factors | 地上部高度 Shoot height | 分株叶面积 Leaf area | 分株生物量Ramet biomass | 根冠比 R/S ratio | |||||||
F | p | F | p | F | p | F | p | ||||
斑块对比度 PC1) | 9.31 | <0.000 1 | 5.98 | 0.001 5 | 7.50 | 0.000 3 | 9.10 | <0.000 1 | |||
分株位置 Position2) | 49.74 | <0.000 1 | 22.24 | <0.000 1 | 2.90 | 0.095 1 | 84.64 | <0.000 1 | |||
交互作用 PC × position 3) | 9.88 | <0.000 1 | 4.74 | 0.005 7 | 1.96 | 0.133 2 | 19.16 | <0.000 1 | |||
1): df=3 2): df =1 3): df =3 p<0.05的p值以黑体显示 Values of p<0.05 are in bold |
[1] | Alpert P (1991). Nitrogen sharing among ramets increases clonal growth in Fragaria chiloensis. Ecology, 72,69-80. |
[2] | Alpert P (1996). Nutrient sharing in natural clonal fragments of Fragaria chiloensis. Journal of Ecology, 84,395-406. |
[3] |
Alpert P (1999a). Clonal integration in Fragaria chiloensis differs between populations: ramets from grassland are selfish. Oecologia, 120,69-76.
DOI URL PMID |
[4] | Alpert P (1999b). Effects of clonal integration on plant plasticity in Fragaria chiloensis. Plant Ecology, 141,99-106. |
[5] |
Alpert P, Mooney HA (1986). Resource sharing among ramets in the clonal herb. Fragaria chiloensis. Oecologia, 70,227-233.
DOI URL PMID |
[6] | Alpert P, Stuefer JF (1997). Division of labour in clonal plants. In: de Kroon H, van Groenendael J eds. The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden, The Netherlands, 137-154. |
[7] | Caraco T, Kelly CK (1991). On the adaptive value of physiological integration in clonal plants. Ecology, 72,81-93. |
[8] |
Caruso CM, Maherali H, Sherrard M (2006). Plasticity of physiology in Lobelia: testing for adaption and constraint. Evolution, 60,980-990.
URL PMID |
[9] | D’Hertefeldt T, Falkengren-Grerup U (2002). Extensive physiological integration in Carex arenaria and Carex disticha in relation to potassium and water availability. New Phytologist, 156,469-477. |
[10] | de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166,73-82. |
[11] |
DeWitt TJ, Sih A, Wilson DS (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13,77-81.
URL PMID |
[12] | Dong M (1993). Morphological plasticity of the clonal herb Lamiastrum galeobdolon (L.) Ehrend. & Polatschek in response to partial shading. New Phytologist, 124,291-300. |
[13] |
Dong M (1995). Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modification due to physiological integration. Oecologia, 101,282-288.
DOI URL PMID |
[14] | Dong M (董鸣) (1996). Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica (植物学报), 38,828-835. (in Chinese with English abstract) |
[15] |
Dorn LA, Pyle EH, Schmitt J (2000). Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. Evolution, 54,1982-1994.
URL PMID |
[16] | Eriksson O, Jerling L (1990). Hierarchical selection and risk spreading in clonal plants. In: van Groenendael J, de Kroon H eds. Clonal Growth in Plants: Regulation and Function. SPB Academic Publishing, The Hague, 79-94. |
[17] |
Friedman D, Alpert P (1991). Reciprocal transport between ramets increases growth of Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich. Oecologia, 86,76-80.
DOI URL PMID |
[18] | Gillespie J (1974). Polymorphism in patchy environments. American Naturalist, 108,145-151. |
[19] |
Hutchings MJ, John EA (2004). The effects of environmental heterogeneity on root growth and root/shoot partitioning. Annals of Botany, 94,1-8.
DOI URL PMID |
[120] | Kotliar NB, Wiens JA (1990). Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos, 59,253-260. |
[21] | Marshall C (1990). Source-sink relations of interconnected ramets. In: van Groenendael J, de Kroon H eds. Clonal Growth in Plants: Regulation and Function. SPB Academic Publishing, The Hague, 23-41. |
[22] | Niva M, Svensson BM, Karlsson PS (2006). Effects of light and water availability on shoot dynamics of the stoloniferous plant Linnaea borealis. Écoscience, 13,318-323. |
[23] | Pitelka LE, Ashmun JW (1985). Physiology and integration of ramets in clonal plants. In: Jackson JBC, Buss LW, Cook RE eds. Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven, CT, USA, 399-435. |
[24] |
Robin C, Hay MJM, Newton PCD (1994). Effect of light quality (red : far-red ratio) and defoliation treatments applied at a single phytomer on axillary bud out growth in Trifolium repens L.. Oecologia, 100,236-242.
DOI URL PMID |
[25] | Roiloa SR, Alpert P, Tharayil N, Hancock G, Bhowmik PC (2007). Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. Journal of Ecology, 95,397-405. |
[26] | SAS Institute Inc. (2004). SAS 9.1.2 Qualification Tools User’s Guide. SAS Institute Inc., Cary,NC,USA. |
[27] | Stuefer JF (1996). Potential and limitations of current concepts regarding the response of clonal plants to environmental heterogeneity. Vegetatio, 127,55-70. |
[28] | Stuefer JF (1998). Two types of division of labour in clonal plants: benefits, costs and constraints. Perspectives in Plant Ecology, Evolution and Systematics, 1,47-60. |
[29] | Stuefer JF, During HJ, Schieving F (1998). A model on optimal root-shoot allocation and water transport in clonal plants. Ecological Modelling, 111,171-186. |
[30] |
Stuefer JF, Hutchings MJ (1994). Environmental heterogeneity and clonal growth: a study of the capacity for reciprocal translocation in Glechoma hederacea L.. Oecologia, 100,302-308.
URL PMID |
[31] | Suzuki JI, Stuefer JF (1999). On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology, 14,11-17. |
[32] | Thompson L (1995). Sites of photoperception in white clover. Grass and Forage Science, 50,259-262. |
[33] | Wang ZW, Li LH, Han XG, Dong M (2004). Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level. Acta Oecologica, 26,255-260. |
[34] | Yu FH, Chen YF, Dong M (2002a). Clonal integration enhances survival and performance of Potentilla anserina, suffering from partial sand burial on Ordos plateau, China. Evolutionary Ecology, 15,303-318. |
[35] | Yu FH, Dong M, Krüsi B (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162,697-704. |
[36] | Yu FH, Dong M, Zhang CY (2002b). Intraclonal resource sharing and functional specialization of ramets in response to resource heterogeneity in three stoloniferous herbs. Acta Botanica Sinica (植物学报), 44,468-473. |
[37] | Zhou HK (周华坤), Zhou XM (周兴民), Zhou L (周立), Shen ZX (沈振西), Li YN (李英年) (2002). The clonal growing characteristic in the stoloniferous herb. Potentilla anserina. Acta Botanica Boreali- Occidentalia Sinica (西北植物学报), 22,9-17. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn