Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1524-1535.DOI: 10.17521/cjpe.2023.0386 cstr: 32100.14.cjpe.2023.0386
• Research Articles • Previous Articles Next Articles
LI Min-Qing1,2,3, ZHOU Xiao-Ming4, WANG Shuang-Long5, CHEN Li-Dan1,2,3, LI Cong-Juan6, LIU Ran1,2,*()
Received:
2023-12-22
Accepted:
2024-05-06
Online:
2024-11-20
Published:
2024-07-03
Contact:
*LIU Ran (liuran@ms.xjb.ac.cn)
Supported by:
LI Min-Qing, ZHOU Xiao-Ming, WANG Shuang-Long, CHEN Li-Dan, LI Cong-Juan, LIU Ran. Effects of stem photosynthesis on hydraulic traits and leaf photosynthesis in Calligonum arborescens under drought stress[J]. Chin J Plant Ecol, 2024, 48(11): 1524-1535.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0386
Fig. 1 Stem photosynthetic rate (Ps) of Calligonum arborescens under drought duration (mean ± SD, n = 5). Same lowercase letters indicates no significant differences between treatments (p > 0.05).
干旱时间 Drought time (d) | Ps (μmol·m-2·s-1) | Rs (μmol·m-2·s-1) | Rd (%) |
---|---|---|---|
0 | 1.45 ± 0.29a | 2.64 ± 0.33a | 55.6 ± 12.9a |
15 | 1.28 ± 0.17a | 2.09 ± 0.25a | 62.4 ± 14.1a |
30 | 1.21 ± 0.33a | 1.19 ± 0.29b | 100.9 ± 10.4b |
Table 1 Stem respiration rate and stem respiration rate refixation ratio under drought conditions (mean ± SD, n = 5)
干旱时间 Drought time (d) | Ps (μmol·m-2·s-1) | Rs (μmol·m-2·s-1) | Rd (%) |
---|---|---|---|
0 | 1.45 ± 0.29a | 2.64 ± 0.33a | 55.6 ± 12.9a |
15 | 1.28 ± 0.17a | 2.09 ± 0.25a | 62.4 ± 14.1a |
30 | 1.21 ± 0.33a | 1.19 ± 0.29b | 100.9 ± 10.4b |
Fig. 2 Percentage loss of conductivity (PLC) and specific hydraulic conductivity (Ks) under drought conditions (mean ± SD, n = 5). Different uppercase or lowercase letters represent the significant difference between the drought time of control or shading. * indicates the significant difference between the control and shading for the same drought time at the p < 0.05 level.
Fig. 3 Micro-CT scan of the vessels after 30 d of drought treatment. A, 2D cross-section of young stem treated of control. B, 2D cross-section of young stem treated of shading. C, Number of vessels statistics and embolized vessels number ratio (mean ± SD). D, Cross-sectional area statistics of vessels and embolized vessels cross-sectional area ratio (mean ± SD). Different lowercase letters represent the significant difference of control and shading in C and D (p < 0.05).
Fig. 4 Starch and soluble sugar contents in root, stem and leaf under drought conditions (mean ± SD, n = 5). Different uppercase or lower case letters represent the significant difference between the drought time of control or shading. * and ** indicate the significant difference between the control and shading for the same drought time at the p < 0.05 and p < 0.01 level.
Fig. 5 Predawn water potential (Ψpd) and midday water potential (Ψmd) under drought conditions (mean ± SD, n = 5). Different uppercase or lowercase letters represent significant difference between the drought time of control or shading (p < 0.05). * and ** indicate the significant difference between the control and shading for the same drought time at the p < 0.05 and p < 0.01 level.
干旱时间 Drought time (d) | 对照 Treatment | AWCl | AWCs | RWCl | RWCs |
---|---|---|---|---|---|
0 | 对照 Control | 3.14 ± 0.42a | 0.81 ± 0.06a | 0.93 ± 0.04a | 0.71 ± 0.01a |
遮光 Shading | 3.03 ± 0.41a | 0.80 ± 0.05a | 0.90 ± 0.05a | 0.72 ± 0.04a | |
15 | 对照 Control | 2.70 ± 0.34a | 0.81 ±0.04a | 0.78 ± 0.05a | 0.68 ± 0.07a |
遮光 Shading | 2.64 ± 0.24a | 0.72 ± 0.05b | 0.76 ± 0.05a | 0.61 ± 0.04a | |
30 | 对照 Control | 1.88 ± 0.27a | 0.61 ± 0.03a | 0.73 ± 0.05a | 0.63 ± 0.03a |
遮光 Shading | 1.22 ± 0.36b | 0.54 ± 0.03b | 0.55 ± 0.03b | 0.45 ± 0.07b |
Table 2 Absolute and relative water content of stem and leaf under drought conditions (mean ± SD)
干旱时间 Drought time (d) | 对照 Treatment | AWCl | AWCs | RWCl | RWCs |
---|---|---|---|---|---|
0 | 对照 Control | 3.14 ± 0.42a | 0.81 ± 0.06a | 0.93 ± 0.04a | 0.71 ± 0.01a |
遮光 Shading | 3.03 ± 0.41a | 0.80 ± 0.05a | 0.90 ± 0.05a | 0.72 ± 0.04a | |
15 | 对照 Control | 2.70 ± 0.34a | 0.81 ±0.04a | 0.78 ± 0.05a | 0.68 ± 0.07a |
遮光 Shading | 2.64 ± 0.24a | 0.72 ± 0.05b | 0.76 ± 0.05a | 0.61 ± 0.04a | |
30 | 对照 Control | 1.88 ± 0.27a | 0.61 ± 0.03a | 0.73 ± 0.05a | 0.63 ± 0.03a |
遮光 Shading | 1.22 ± 0.36b | 0.54 ± 0.03b | 0.55 ± 0.03b | 0.45 ± 0.07b |
Fig. 6 Leaf photosynthetic rate (Pl), transpiration rate (Tr) and leaf stomatal conductance (gs) under drought conditions (mean ± SD, n = 5). Different uppercase or lowercase letters represent the significant difference between the drought time of control or shading (p < 0.05). * and ** indicate the significant difference between the control and shading for the same drought time at the p < 0.05 and p < 0.01 level.
Fig. 7 Conceptual diagram illustrating stem photosynthesis of Calligonum arborescens resistance drought stress. The unit of leaf photosynthesis is μmol·m-2·s-1, and the unit of non-structural carbohydrate content is mg·g-1. TD0, initial drought; TD15, after 15 d of drought; TD30, after 30 d of drought. The proportion of TD15 and TD30 decline is relative to TD0. PLC, percentage loss of conductivity; NSC, non-structural carbohydrates.
干旱天数 Drought time (d) | 处理 Treatment | NSCl | NSCs | NSCr |
---|---|---|---|---|
0 | 对照组Control | 119.3 ± 9.6a | 90.8 ± 6.8a | 108.6 ± 8.9a |
遮光组Shading | 111.0 ± 5.9a | 87.0 ± 7.5a | 113.2 ± 15.2a | |
15 | 对照组Control | 94.3 ± 10.5a | 106.9 ± 7.0a | 103.1 ± 12.9a |
遮光组Shading | 76.5 ± 2.5b | 73.7 ± 4.0b | 107.6 ± 13.6a | |
30 | 对照组Control | 83.1 ± 6.0a | 117.3 ± 9.7a | 96.0 ± 5.5a |
遮光组Shading | 63.9 ± 6.1b | 88.6 ± 8.0b | 79.1 ± 7.1b |
Supplement III Non-structure carbohydrate content in leaf, stem and root (NSCl, NSCs, NSCr) under drought conditions of Calligonum arborescens (mean ± SD, n = 5).
干旱天数 Drought time (d) | 处理 Treatment | NSCl | NSCs | NSCr |
---|---|---|---|---|
0 | 对照组Control | 119.3 ± 9.6a | 90.8 ± 6.8a | 108.6 ± 8.9a |
遮光组Shading | 111.0 ± 5.9a | 87.0 ± 7.5a | 113.2 ± 15.2a | |
15 | 对照组Control | 94.3 ± 10.5a | 106.9 ± 7.0a | 103.1 ± 12.9a |
遮光组Shading | 76.5 ± 2.5b | 73.7 ± 4.0b | 107.6 ± 13.6a | |
30 | 对照组Control | 83.1 ± 6.0a | 117.3 ± 9.7a | 96.0 ± 5.5a |
遮光组Shading | 63.9 ± 6.1b | 88.6 ± 8.0b | 79.1 ± 7.1b |
[1] | Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291. |
[2] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[3] |
Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233-237.
DOI PMID |
[4] | Anderegg WRL, Konings AG, Trugman AT, Yu KL, Bowling DR, Gabbitas R, Karp DS, Pacala S, Sperry JS, Sulman BN, Zenes N (2018). Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561, 538-541. |
[5] | Ávila E, Herrera A, Tezara W (2014). Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica, 52, 3-15. |
[6] |
Ávila-Lovera E, Zerpa AJ, Santiago LS (2017). Stem photosynthesis and hydraulics are coordinated in desert plant species. New Phytologist, 216, 1119-1129.
DOI PMID |
[7] | Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K (2013a). Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytologist, 197, 555-565. |
[8] | Bloemen J, Overlaet-Michiels L, Steppe K (2013b). Understanding plant responses to drought: How important is woody tissue photosynthesis? Acta Horticulturae, 991, 149-155. |
[9] | Cai XA, Zeng XP, Chen YQ (2015). Stem corticular photosynthesis: ecophysiological functions and their measurement. Acta Ecologica Sinica, 35, 6909-6922. |
[蔡锡安, 曾小平, 陈远其 (2015). 树干皮层光合作用——生理生态功能和测定方法. 生态学报, 35, 6909-6922.] | |
[10] |
Cernusak LA, Cheesman AW (2015). The benefits of recycling: How photosynthetic bark can increase drought tolerance. New Phytologist, 208, 995-997.
DOI PMID |
[11] | Cernusak LA, Marshall JD (2000). Photosynthetic refixation in branches of western white pine. Functional Ecology, 14, 300-311. |
[12] |
Chastain DR, Snider JL, Collins GD, Perry CD, Whitaker J, Byrd SA (2014). Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Journal of Plant Physiology, 171, 1576-1585.
DOI PMID |
[13] | Chen QC, Hu T, Li XH, Song CP, Zhu JK, Chen LQ, Zhao Y (2022). Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nature Plants, 8, 68-77. |
[14] | Chen X, Zhao P, Zhao X, Wang Q, Ouyang L, Larjavaara M, Zhu L, Ni G (2021). Involvement of stem corticular photosynthesis in hydraulic maintenance of Eucalyptus trees and its effect on leaf gas exchange. Environmental and Experimental Botany, 186, 104451. DOI: 10.1016/j.envexpbot.2021.104451. |
[15] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[16] | Cramer MD, Hoffmann V, Verboom GA (2008). Nutrient availability moderates transpiration in Ehrharta calycina. New Phytologist, 179, 1048-1057. |
[17] | Dai AG (2011). Drought under global warming: a review. WIREs Climate Change, 2, 45-65. |
[18] |
de Baerdemaeker NJF, Salomón RL, de Roo L, Steppe K (2017). Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation. New Phytologist, 216, 720-727.
DOI PMID |
[19] | de Roo L, Salomón RL, Oleksyn J, Steppe K (2020a). Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. New Phytologist, 228, 70-81. |
[20] | de Roo L, Salomón RL, Steppe K (2020b). Woody tissue photosynthesis reduces stem CO2 efflux by half and remains unaffected by drought stress in young Populus tremula trees. Plant, Cell & Environment, 43, 981-991. |
[21] |
Fang YJ, Xiong LZ (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72, 673-689.
DOI PMID |
[22] | Feng XL, Huang XH, Li MQ, Ma J, Liu R (2022a). Changes of stem photosynthetic characteristics before and after germination in seven woody species. Chinese Journal of Ecology, 41, 654-660. |
[冯晓龙, 黄新焕, 李民青, 马杰, 刘冉 (2022a). 7种木本植物萌芽前后枝干光合特征变化. 生态学杂志, 41, 654-660.] | |
[23] | Feng XL, Liu R, Li CJ, Wang YG, Kong L, Wang ZR (2022b). Stem photosynthesis and its main influencing factors of Haloxylon ammodendron and Tamarix ramosissima. Chinese Journal of Applied Ecology, 33, 344-352. |
[冯晓龙, 刘冉, 李从娟, 王玉刚, 孔璐, 王增如 (2022b). 梭梭和多枝柽柳的枝干光合及其主要影响因子. 应用生态学报, 33, 344-352.] | |
[24] | Feng X, Liu R, Li C, Zhang H, Slot M (2023). Contrasting responses of two C4 desert shrubs to drought but consistent decoupling of photosynthesis and stomatal conductance at high temperature. Environmental and Experimental Botany, 209, 105295. DOI: 10.1016/j.envexpbot.2023.105295. |
[25] |
Gupta A, Rico-Medina A, Caño-Delgado AI (2020). The physiology of plant responses to drought. Science, 368, 266-269.
DOI PMID |
[26] | Hartmann H (2015). Carbon starvation during drought-induced tree mortality—Are we chasing a myth? Journal of Plant Hydraulics, 2, e005. DOI: 10.20870/jph.2015.e005. |
[27] |
Huang JP, Yu HP, Guan XD, Wang GY, Guo RX (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166-171.
DOI |
[28] |
Li R, Jiang ZM, Zhang SX, Cai J (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848.
DOI |
[李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.]
DOI |
|
[29] | Li Y, Zheng XJ, Wang YG, Xu GQ, Liu R (2021). Experiment and simulation platform for oasis-desert symbiotic relationship (ODP). Bulletin of Chinese Academy of Sciences, 36, 1506-1514. |
[李彦, 郑新军, 王玉刚, 徐贵青, 刘冉 (2021). 绿洲-荒漠共生关系实验模拟平台(绿洲-荒漠平台). 中国科学院院刊, 36, 1506-1514.] | |
[30] | Li ZM, Wang CK, Luo DD (2017). Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii. Chinese Journal of Plant Ecology, 41, 1140-1148. |
[李志民, 王传宽, 罗丹丹 (2017). 兴安落叶松叶水力与光合性状的变异性和相关性. 植物生态学报, 41, 1140-1148.]
DOI |
|
[31] | Liu JX, Gu L, Yu YC, Huang P, Wu ZG, Zhang Q, Qian YQ, Wan XC, Sun ZY (2019). Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. Plant, Cell & Environment, 42, 2584-2596. |
[32] |
Marchin RM, Medlyn BE, Tjoelker MG, Ellsworth DS (2023). Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. Global Change Biology, 29, 6319-6335.
DOI PMID |
[33] |
Maurel C, Nacry P (2020). Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants, 6, 744-749.
DOI PMID |
[34] | McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011). The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology & Evolution, 26, 523-532. |
[35] | Mu Q, Dong MQ, Xu J, Cao YX, Ding YB, Sun SK, Cai HJ (2022). Photosynthesis of winter wheat effectively reflected multiple physiological responses under short-term drought-rewatering conditions. Journal of the Science of Food and Agriculture, 102, 2472-2483. |
[36] |
Nardini A, Lo Gullo MA, Salleo S (2011). Refilling embolized xylem conduits: Is it a matter of phloem unloading? Plant Science, 180, 604-611.
DOI PMID |
[37] | Pang J, Zhao H, Bansal R, Bohuon E, Lambers H, Ryan MH, Siddique KHM (2018). Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Plant, Cell & Environment, 41, 2069-2079. |
[38] |
Poorter L, Kitajima K (2007). Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology, 88, 1000-1011.
PMID |
[39] | Qi J, Fan Z, Fu P, Zhang Y, Sterck F (2021). Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: carbon gain, hydraulics and nutrient-use efficiencies. Tree Physiology, 41, 12-23. |
[40] |
Sala A, Woodruff DR, Meinzer FC (2012). Carbon dynamics in trees: feast or famine? Tree Physiology, 32, 764-775.
DOI PMID |
[41] | Saveyn A, Steppe K, Ubierna N, Dawson TE (2010). Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant, Cell & Environment, 33, 1949-1958. |
[42] |
Schmitz N, Egerton JJG, Lovelock CE, Ball MC (2012). Light-dependent maintenance of hydraulic function in mangrove branches: Do xylary chloroplasts play a role in embolism repair? New Phytologist, 195, 40-46.
DOI PMID |
[43] | Stephenson NL, Das AJ (2020). Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought. Nature Communications, 11, 3402. DOI: 10.1038/s41467-019-12380-6. |
[44] | Teskey RO, Saveyn A, Steppe K, McGuire MA (2008). Origin, fate and significance of CO2 in tree stems. New Phytologist, 177, 17-32. |
[45] | Trenberth KE, Dai AG, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014). Global warming and changes in drought. Nature Climate Change, 4, 17-22. |
[46] |
Vandegehuchte MW, Bloemen J, Vergeynst LL, Steppe K (2015). Woody tissue photosynthesis in trees: salve on the wounds of drought? New Phytologist, 208, 998-1002.
DOI PMID |
[47] | Wittmann C, Pfanz H (2018). More than just CO2-recycling: corticular photosynthesis as a mechanism to reduce the risk of an energy crisis induced by low oxygen. New Phytologist, 219, 551-564. |
[48] | Wu QX, Wu FZ, Hu Y, Kang ZJ, Zhang YY, Yang J, Yue K, Ni XY, Yang YS (2021). Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden. Chinese Journal of Plant Ecology, 45, 771-779. |
[吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛 (2021). 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较. 植物生态学报, 45, 771-779.]
DOI |
|
[49] | Yang B, Liu ZZ, Peng FR, Cao F, Chen T, Deng QJ, Chen WJ (2017). Growth and photosynthetic characteristics for pecan cultivars during drought stress and recovery. Journal of Zhejiang A&F University, 34, 991-998. |
[杨标, 刘壮壮, 彭方仁, 曹凡, 陈涛, 邓秋菊, 陈文静 (2017). 干旱胁迫和复水下不同薄壳山核桃品种的生长和光合特性. 浙江农林大学学报, 34, 991-998.] | |
[50] | Yin J, Qiu GY, He F, He KN, Tian JH, Zhang WQ, Xiong YJ, Zhao SH, Liu JX (2008). Leaf area characteristics of plantation stands in semi-arid loess hill-gully region of China. Chinese Journal of Plant Ecology, 32, 440-447. |
[尹婧, 邱国玉, 何凡, 贺康宁, 田晶会, 张卫强, 熊育久, 赵少华, 刘建新 (2008). 半干旱黄土丘陵区人工林叶面积特征. 植物生态学报, 32, 440-447.]
DOI |
|
[51] |
Zhang ZH, Cao BL, Gao S, Xu K (2019). Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256, 1013-1024.
DOI PMID |
[1] | PENG Zhong-Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variations and relationships of three Acer species in different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(6): 730-743. |
[2] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[3] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
[4] | WANG Zhao-Guo, WANG Chuan-Kuan. Mechanisms of carbon source-sink limitations to tree growth [J]. Chin J Plant Ecol, 2019, 43(12): 1036-1047. |
[5] | ZHAO Feng-Hua, MA Jun-Hua, OUYANG Zhu. Effects of excessive nitrogen supply on productivity of winter wheat [J]. Chin J Plant Ecol, 2012, 36(10): 1075-1081. |
[6] | WANG Kong-Jun, DONG Shu-Ting, HU Chang-Hao, LIU Kai-Chang, SUN Qing-Quan. Improvement in Photosynthetic Characteristics Among Maize Varieties in China from the 1950s to the 1990s [J]. Chin J Plan Ecolo, 2001, 25(2): 247-251. |
[7] | CHANG Jie, GE Ying, CHEN Zeng-Hong, PAN Xiao-Dong, LIU Ke, CHEN Qi-Chang. Characteristics of the Leaf Net Photosynthesis of the Evergreen Broad-leaved Forest Dominated by Quercus glauca and Their Significance in Coenology [J]. Chin J Plan Ecolo, 1999, 23(5): 393-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn