Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (10): 1015-1023.DOI: 10.3724/SP.J.1258.2012.01015
LUO Wei-Cheng1,2,3, ZENG Fan-Jiang1,2,*(), LIU Bo1,2,3, ZHANG Li-Gang1,2,3, SONG Cong1,2,3, PENG Shou-Lan1,2,3, Stefan K. ARNDT4
Received:
2012-04-09
Accepted:
2012-06-06
Online:
2012-04-09
Published:
2012-09-26
Contact:
ZENG Fan-Jiang
LUO Wei-Cheng, ZENG Fan-Jiang, LIU Bo, ZHANG Li-Gang, SONG Cong, PENG Shou-Lan, Stefan K. ARNDT. Response of root systems to soil heterogeneity and interspecific competition in Alhagi sparsi- folia[J]. Chin J Plant Ecol, 2012, 36(10): 1015-1023.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.01015
Fig. 1 Location of Alhagi sparsifolia seedlings in the glass container and the horizontal distribution of root biomass (mean ± SE). A, No nutrient addition, no competitor. B, Nutrient patch at the edge, no competitor. C, nutrient patch at the center, no competitor. D, No nutrient patch, with competitor. E, Nutrient patch at the edge, with competitor. F, Nutrient patch at the center, with competitor. Each rectangle represents a glass container (length-height ratio of the rectangle does not presenting the real proportion of glass container), and the numbers at the bottom of box represent the length of glass container (cm). The location of the plant individuals is marked. Diagonal bars denote the nutrient patches. The horizontal unfilled bars indicate the root biomass of the root on the left and right side of root system of the focal plant, and the horizontal black bars represent the left- and right-side root biomass of the competitor.
Fig. 2 Focal plant biomass under soil nutrient patch treatments and competition treatment (mean ± SE). Positive numbers represent the shoot biomass (above x-axis), and negative numbers indicate the root biomass (below x-axis). The white bars represent the biomass of the focal plant without comepetor, and the black bars indicate the plant biomass with competitors. Different lowercase letters indicate the significant differences in the biomass of the focal plant under different treatments (p < 0.01).
处理 Treatment | 自由度 df | 根系生物量 Root biomass | 枝叶生物量 Shoot biomass | 总生物量 Total biomass | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
竞争处理 Competition treatment | 1 | 61.348 | 0.001 | 38.472 | 0.003 | 34.386 | 0.004 | ||
土壤处理 Soil treatment | 2 | 1.085 | 0.396 | 1.400 | 0.317 | 0.678 | 0.543 | ||
竞争和土壤处理 Competition by soil treatment | 1 | 1.973 | 0.233 | 1.716 | 0.260 | 2.255 | 0.208 |
Table 1 Two-way analysis of variance (ANOVA) results of biomass of different parts of plants under different treatments
处理 Treatment | 自由度 df | 根系生物量 Root biomass | 枝叶生物量 Shoot biomass | 总生物量 Total biomass | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
竞争处理 Competition treatment | 1 | 61.348 | 0.001 | 38.472 | 0.003 | 34.386 | 0.004 | ||
土壤处理 Soil treatment | 2 | 1.085 | 0.396 | 1.400 | 0.317 | 0.678 | 0.543 | ||
竞争和土壤处理 Competition by soil treatment | 1 | 1.973 | 0.233 | 1.716 | 0.260 | 2.255 | 0.208 |
处理 Treatment | 目标植物 Focal plant | 竞争植物 Competitor plant | ||||
---|---|---|---|---|---|---|
左侧根系 Left root | 右侧根系 Right root | 左侧根系 Left root | 右侧根系 Right root | |||
无养分斑块 No nutrient patch | 无竞争者 No competitor | -32.52 ± 0.81a | -83.78 ± 1.38b | - | - | |
有竞争者 With a competitor | -30.82 ± 0.11a | -47.06 ± 0.12c | -34.82 ± 0.02a | -56.56 ± 0.23b | ||
养分斑块边缘 Patch-edge | 无竞争者 No competitor | -40.95 ± 0.53a | -91.37 ± 0.62b | - | - | |
有竞争者 With a competitor | -35.87 ± 1.16a | -42.94 ± 0.17a | -43.45 ± 0.06a | -60.99 ± 0.43b | ||
养分斑块中央 Patch-center | 无竞争者 No competitor | -36.87 ± 0.47a | -102.28 ± 0.25b | - | - | |
有竞争者 With a competitor | -30.87 ± 1.09a | -49.27 ± 0.14c | -40.14 ± 1.02a | -41.87 ± 0.46a |
Table 2 Respiration rate of root system (nmol·g-1·s-1, mean ± SE)
处理 Treatment | 目标植物 Focal plant | 竞争植物 Competitor plant | ||||
---|---|---|---|---|---|---|
左侧根系 Left root | 右侧根系 Right root | 左侧根系 Left root | 右侧根系 Right root | |||
无养分斑块 No nutrient patch | 无竞争者 No competitor | -32.52 ± 0.81a | -83.78 ± 1.38b | - | - | |
有竞争者 With a competitor | -30.82 ± 0.11a | -47.06 ± 0.12c | -34.82 ± 0.02a | -56.56 ± 0.23b | ||
养分斑块边缘 Patch-edge | 无竞争者 No competitor | -40.95 ± 0.53a | -91.37 ± 0.62b | - | - | |
有竞争者 With a competitor | -35.87 ± 1.16a | -42.94 ± 0.17a | -43.45 ± 0.06a | -60.99 ± 0.43b | ||
养分斑块中央 Patch-center | 无竞争者 No competitor | -36.87 ± 0.47a | -102.28 ± 0.25b | - | - | |
有竞争者 With a competitor | -30.87 ± 1.09a | -49.27 ± 0.14c | -40.14 ± 1.02a | -41.87 ± 0.46a |
Fig. 3 Root distribution of the focal plant and competitor in the glass container. Focal plant is at the left side in each illustration, and the competitor is at the right side in D, E and F. The vertical length and horizontal length in each illustration represent the height and length of the glass container.
1 | Agzhigitova N, Allanazarova U, Kapustina LA ( 1995). Trans- formation of desert pasture vegetation under effect of anthropogenic pressure. Problems of Desert Development, 3, 62-65. |
2 | Bliss KM, Jones RH, Mitchell RJ, Mou PP ( 2002). Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behavior? New Phytologist, 154, 409-417. |
3 | Cahill JF, Casper BB ( 1999). Growth consequences of soil nutrient heterogeneity for two old-field herbs, Ambrosia artemisiifolia and Phytolacca americana, grown individually and in combination. Annals of Botany, 83, 471-478. |
4 | Cahill JF, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, Clair CC St ( 2010). Plants integrate information about nutrients and neighbors. Science, 328, 1657. |
5 | Callaway RM ( 2002). The detection of neighbors by plants. Trends in Ecology and Evolution, 17, 104-105. |
6 | Casper BB, Jackson RB ( 1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570. |
7 | de Kroon H ( 2007). How do roots interact? Science, 318, 1562-1563. |
8 | de Kroon H, Mommer L, Nishiwaki A ( 2003). Root competi- tion: towards a mechanistic understanding. In: de Kroon H, Visser EJW eds. Root Ecology. Springer-Verlag, Berlin. 215-234. |
9 | Dudley SA, File AL ( 2007). Kin recognition in an annual plant. Biology Letter, 3, 435-438. |
10 | Falik O, de Kroon H, Novoplansky A ( 2006). Physiologically- mediated self/nonself root discrimination in Trifolium repens has mixed effects on plant performance. Plant Signaling and Behavior, 1, 116-121. |
11 | Falik O, Reides P, Gersani M, Novoplansky A ( 2003). Self/ non-self discrimination in roots. Journal of Ecology, 91, 525-531. |
12 | Fransen B, de Kroon H ( 2001). Long-term disadvantages of selective root placement: root proliferation and shoot biomass of two perennial grass species in a 2-year experiment. Journal of Ecology, 89, 711-722. |
13 | Gersani M, Abramsky Z, Falik O ( 1998). Density-dependent habitat selection in plants. Evolutionary Ecology, 12, 223-234. |
14 | Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z ( 2001). Tragedy of the commons as a result of root competition. Journal of Ecology, 89, 660-669. |
15 | Gutierrez JR, Whitford WG ( 1987). Chihuahuan desert annuals: importance of water and nitrogen. Ecology, 68, 409-418. |
16 | Hammer GL, Dong ZS, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M ( 2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Science, 49, 299-312. |
17 | Hansen GK, Jensen CR ( 1977). Growth and maintenance respiration in whole plants, tops, and roots of Lolium multiflorum. Physiologia Plantarum, 39, 155-164. |
18 | Hess L, de Kroon H ( 2007). Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination. Journal of Ecology, 95, 241-251. |
19 | Hodge A ( 2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
20 | Hodge A, Robinson D, Griffiths BS, Fitter AH ( 1999). Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment, 22, 811-820. |
21 | Karban R ( 2008). Plant behaviour and communication. Ecology Letters, 11, 727-739. |
22 | Kembel SW, Cahill JF Jr ( 2005). Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. The American Naturalist, 166, 216-230. |
23 | Kembel SW, de Kroon H, Cahill JF, Mommer L ( 2008). Improving the scale and precision of hypotheses to explain root foraging ability. Annals of Botany, 101, 1295-1301. |
24 | Kutsch WL, Staack A, Wötzel J, Middelhoff U, Kappen L ( 2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157-168. |
25 | Li XY ( 李向义), Zhang XM ( 张希明), He XY ( 何兴元), Zeng FJ ( 曾凡江 ), Foetzki A, Thomas FM ( 2004). Water relation characteristics of four perennial plant species growing in the transition zone between oasis and open desert. Acta Ecologica Sinica (生态学报), 24, 1164-1171. (in Chinese with English abstract) |
26 | Liu B ( 刘波), Zeng FJ ( 曾凡江), Guo HF ( 郭海峰), Zeng J ( 曾杰 ) ( 2009). Effects of groundwater table on growth characteristics of Alhagi sparsifolia Shap. seedlings. Chinese Journal of Ecology (生态学杂志), 28, 237-242. (in Chinese with English abstract) |
27 | Liu HSH, Li FM ( 2005). Photosynthesis, root respiration, and grain yield of spring wheat in response to surface soil drying. Plant Growth Regulation, 45, 149-154. |
28 | Lovelock CE, Ruess RW, Feller IC ( 2006). Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability. Tree Physiology, 26, 1601-1606. |
29 | Lynch J ( 2007). Roots of the second green revolution. Australian Journal of Botany, 55, 493-512. |
30 | Mahall BE, Callaway RM ( 1991). Root communication among desert shrubs. Proceedings of the National Academy of Sciences of the United States of America, 88, 874-876. |
31 | Mahall BE, Callaway RM ( 1996). Effects of regional origin and genotype on intraspecific root communication in the desert shrub Ambrosia dumosa(Asteraceae). American Journal of Botany, 83, 93-98. |
32 | Maina GG, Brown JS, Gersani M ( 2002). Intra-plant versus inter-plant root competition in beans: avoidance, resource matching or tragedy of the commons. Plant Ecology, 160, 235-247. |
33 | Melissa DH, Rosas JC, Brown KM, Lynch JP ( 2005). Root architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology, 32, 737-748. |
34 | Mommer L, Visser EJW, van Ruijven J, de Caluwe H, Pierik R, de Kroon H ( 2011). Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant and Soil, 344, 347-360. |
35 | Noy-Meir I ( 1973). Desert ecosystems, environment and producers. Annual Review of Ecology and Systematics, 4, 25-41. |
36 | Pierik R, Visser EJW, de Kroon H, Voesenek LACJ ( 2003). Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant, Cell & Environment, 26, 1229-1234. |
37 | Rajaniemi TK ( 2007). Root foraging traits and competitive ability in heterogeneous soils. Oecologia, 153, 145-152. |
38 | Semchenko M, John EA, Hutchings MJ ( 2007). Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytologist, 176, 644-654. |
39 | Spinelli R, Nati C, Magagnotti N ( 2005). Harvesting and transport of root biomass from fast-growing poplar plantations. Silva Fennica, 39, 539-548. |
40 | Stephens DW, Brown JS, Ydenberg RC (2007). Foraging: Behavior and Ecology. University of Chicago Press, Chicago. |
41 | Usman S, Rawat YS, Singh SP, Garkoti SC ( 1999). Fine root biomass production and turnover in evergreen forests of Central Himalaya, India. Oecologia Montana, 6, 4-8. |
42 | Veen BW ( 1981). Relation between root respiration and root activity. Plant and Soil, 63, 73-76. |
43 | Vonlanthen B, Zhang X, Bruelheide H ( 2010). On the run for water―Root growth of two phreatophytes in the Taklamakan Desert. Journal of Arid Environments, 7, 1604-1615. |
44 | Weiner J ( 1990). Asymmetric competition in plant populations. Trends in Ecology and Evolution, 5, 360-364. |
45 | Xue W ( 薛伟), Li XY ( 李向义), Zhu JT ( 朱军涛), Lin LS ( 林丽莎), Wang YJ ( 王迎菊 ) ( 2011). Effects of shading on leaf morphology and response characteristics of photosynthesis in Alhagi sparsifolia. Chinese Journal of Plant Ecology (植物生态学报), 35, 82-90. (in Chinese with English abstract) |
46 | Zeng FJ, Bleby TM, Landman PA, Arndt SK, Adams MA, Arndt SK ( 2006). Water and nutrient dynamics in surface roots and soils are not modified by short-term flooding of phreatophytic plants in hyperarid desert. Plant and Soil, 279, 129-139. |
47 | Zeng FJ ( 曾凡江), Guo HF ( 郭海峰), Liu B ( 刘波), Zeng J ( 曾杰), Xing WJ ( 邢文娟), Zhang XL ( 张晓雷 ) ( 2010). Characteristics of biomass allocation and root distribution of Tamarix ramosissima Ledeb. and Alhagispa rsifolia Shap. seedlings. Arid Land Geography (干旱区地理), 33, 59-64. (in Chinese with English abstract) |
48 | Zhang HM, Jennings A, Barlow PW, Forde BG ( 1999). Dual pathways for regulation of root branching by nitrate. Proceeding of the National Academy of Sciences of the United States of America, 96, 6529-6534. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2272
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn