Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (7): 749-760.DOI: 10.17521/cjpe.2016.0288
• Research Articles • Previous Articles Next Articles
Ze-Bin LIU1, Yan-Hui WANG1,*(), Yu LIU2, Ao TIAN1, Ya-Rui WANG1, Hai-Jun ZUO1
Received:
2016-09-13
Accepted:
2017-02-28
Online:
2017-07-10
Published:
2017-08-21
Contact:
Yan-Hui WANG
About author:
KANG Jing-yao(1991-), E-mail: Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China[J]. Chin J Plant Ecol, 2017, 41(7): 749-760.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0288
样地 Plot | 海拔 Elevation (m) | 坡度 Slope degree (°) | 水平坡长 Horizontal length (m) | 坡位 Slope position | 林分密度 Stand density (ind.·hm-2) | 林冠郁 闭度 Canopy density | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 枝下高 Clear length (m) | 冠幅直径 Canopy diameter (m) | 地上生物量 Aboveground biomass (t•hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2β471.4 | 26.3 | 26.9 | 坡上 Upper | 942 | 0.73 | 20.25 ± 3.46 | 16.71 ± 1.71 | 5.53 ± 1.03 | 3.22 ± 0.60 | 108.59 |
2 | 2β458.1 | 27.2 | 26.7 | 坡上 Upper | 749 | 0.74 | 21.04 ± 3.91 | 17.04 ± 2.12 | 5.77 ± 1.06 | 3.58 ± 0.58 | 105.55 |
3 | 2β444.4 | 24.4 | 27.3 | 坡上 Upper | 854 | 0.72 | 20.34 ± 4.22 | 17.04 ± 2.14 | 5.83 ± 0.94 | 4.31 ± 0.93 | 112.55 |
4 | 2β432.0 | 25.3 | 27.1 | 中上 Upper-middle | 870 | 0.73 | 20.01 ± 5.00 | 17.40 ± 2.73 | 5.93 ± 0.90 | 4.07 ± 0.86 | 116.60 |
5 | 2β421.3 | 22.5 | 27.7 | 中上 Upper-middle | 746 | 0.75 | 19.94 ± 3.65 | 17.54 ± 2.05 | 6.22 ± 0.95 | 3.22 ± 0.58 | 111.88 |
6 | 2β409.8 | 24.5 | 27.3 | 中上 Upper-middle | 831 | 0.68 | 18.46 ± 5.60 | 15.72 ± 3.13 | 5.44 ± 1.19 | 3.53 ± 1.09 | 91.32 |
7 | 2β397.4 | 22.0 | 27.8 | 坡中 Middle | 719 | 0.81 | 21.03 ± 4.56 | 17.94 ± 2.25 | 6.43 ± 1.24 | 3.41 ± 0.98 | 118.19 |
8 | 2β386.1 | 26.8 | 26.8 | 坡中 Middle | 933 | 0.79 | 20.28 ± 5.65 | 17.12 ± 2.77 | 6.18 ± 1.30 | 3.37 ± 1.10 | 127.51 |
9 | 2β372.6 | 27.7 | 26.6 | 坡中 Middle | 815 | 0.73 | 19.78 ± 4.70 | 17.87 ± 2.50 | 6.46 ± 1.13 | 3.29 ± 0.90 | 108.54 |
10 | 2β358.7 | 20.1 | 28.2 | 中下 Lower-middle | 674 | 0.67 | 20.83 ± 4.64 | 18.24 ± 2.27 | 5.82 ± 0.88 | 3.76 ± 1.01 | 99.21 |
11 | 2β348.4 | 17.9 | 28.6 | 中下 Lower-middle | 572 | 0.65 | 20.62 ± 4.68 | 17.75 ± 2.91 | 5.88 ± 1.10 | 3.46 ± 0.78 | 88.44 |
12 | 2β339.2 | 30.0 | 26.0 | 中下 Lower-middle | 770 | 0.70 | 19.69 ± 5.68 | 17.04 ± 3.54 | 5.52 ± 1.03 | 3.23 ± 0.92 | 101.87 |
13 | 2β324.2 | 30.4 | 25.9 | 坡下 Lower | 786 | 0.74 | 19.93 ± 5.08 | 18.07 ± 2.53 | 5.77 ± 1.11 | 2.81 ± 0.83 | 108.20 |
14 | 2β309.0 | 37.4 | 23.8 | 坡下 Lower | 1β035 | 0.75 | 18.07 ± 5.08 | 16.57 ± 2.98 | 5.85 ± 1.25 | 2.93 ± 0.80 | 111.96 |
15 | 2β290.8 | 37.3 | 23.9 | 坡下 Lower | 955 | 0.70 | 18.36 ± 5.43 | 15.97 ± 3.03 | 5.32 ± 0.95 | 3.38 ± 1.03 | 104.81 |
16 | 2β275.6 | 34.9 | 24.6 | 坡脚 Bottom | 907 | 0.72 | 18.72 ± 4.06 | 16.19 ± 2.35 | 6.06 ± 0.93 | 3.33 ± 0.77 | 98.67 |
Table 1 The basis information of Larix gmelinii var. principis-rupprechtii plantation plots on the study slope
样地 Plot | 海拔 Elevation (m) | 坡度 Slope degree (°) | 水平坡长 Horizontal length (m) | 坡位 Slope position | 林分密度 Stand density (ind.·hm-2) | 林冠郁 闭度 Canopy density | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 枝下高 Clear length (m) | 冠幅直径 Canopy diameter (m) | 地上生物量 Aboveground biomass (t•hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2β471.4 | 26.3 | 26.9 | 坡上 Upper | 942 | 0.73 | 20.25 ± 3.46 | 16.71 ± 1.71 | 5.53 ± 1.03 | 3.22 ± 0.60 | 108.59 |
2 | 2β458.1 | 27.2 | 26.7 | 坡上 Upper | 749 | 0.74 | 21.04 ± 3.91 | 17.04 ± 2.12 | 5.77 ± 1.06 | 3.58 ± 0.58 | 105.55 |
3 | 2β444.4 | 24.4 | 27.3 | 坡上 Upper | 854 | 0.72 | 20.34 ± 4.22 | 17.04 ± 2.14 | 5.83 ± 0.94 | 4.31 ± 0.93 | 112.55 |
4 | 2β432.0 | 25.3 | 27.1 | 中上 Upper-middle | 870 | 0.73 | 20.01 ± 5.00 | 17.40 ± 2.73 | 5.93 ± 0.90 | 4.07 ± 0.86 | 116.60 |
5 | 2β421.3 | 22.5 | 27.7 | 中上 Upper-middle | 746 | 0.75 | 19.94 ± 3.65 | 17.54 ± 2.05 | 6.22 ± 0.95 | 3.22 ± 0.58 | 111.88 |
6 | 2β409.8 | 24.5 | 27.3 | 中上 Upper-middle | 831 | 0.68 | 18.46 ± 5.60 | 15.72 ± 3.13 | 5.44 ± 1.19 | 3.53 ± 1.09 | 91.32 |
7 | 2β397.4 | 22.0 | 27.8 | 坡中 Middle | 719 | 0.81 | 21.03 ± 4.56 | 17.94 ± 2.25 | 6.43 ± 1.24 | 3.41 ± 0.98 | 118.19 |
8 | 2β386.1 | 26.8 | 26.8 | 坡中 Middle | 933 | 0.79 | 20.28 ± 5.65 | 17.12 ± 2.77 | 6.18 ± 1.30 | 3.37 ± 1.10 | 127.51 |
9 | 2β372.6 | 27.7 | 26.6 | 坡中 Middle | 815 | 0.73 | 19.78 ± 4.70 | 17.87 ± 2.50 | 6.46 ± 1.13 | 3.29 ± 0.90 | 108.54 |
10 | 2β358.7 | 20.1 | 28.2 | 中下 Lower-middle | 674 | 0.67 | 20.83 ± 4.64 | 18.24 ± 2.27 | 5.82 ± 0.88 | 3.76 ± 1.01 | 99.21 |
11 | 2β348.4 | 17.9 | 28.6 | 中下 Lower-middle | 572 | 0.65 | 20.62 ± 4.68 | 17.75 ± 2.91 | 5.88 ± 1.10 | 3.46 ± 0.78 | 88.44 |
12 | 2β339.2 | 30.0 | 26.0 | 中下 Lower-middle | 770 | 0.70 | 19.69 ± 5.68 | 17.04 ± 3.54 | 5.52 ± 1.03 | 3.23 ± 0.92 | 101.87 |
13 | 2β324.2 | 30.4 | 25.9 | 坡下 Lower | 786 | 0.74 | 19.93 ± 5.08 | 18.07 ± 2.53 | 5.77 ± 1.11 | 2.81 ± 0.83 | 108.20 |
14 | 2β309.0 | 37.4 | 23.8 | 坡下 Lower | 1β035 | 0.75 | 18.07 ± 5.08 | 16.57 ± 2.98 | 5.85 ± 1.25 | 2.93 ± 0.80 | 111.96 |
15 | 2β290.8 | 37.3 | 23.9 | 坡下 Lower | 955 | 0.70 | 18.36 ± 5.43 | 15.97 ± 3.03 | 5.32 ± 0.95 | 3.38 ± 1.03 | 104.81 |
16 | 2β275.6 | 34.9 | 24.6 | 坡脚 Bottom | 907 | 0.72 | 18.72 ± 4.06 | 16.19 ± 2.35 | 6.06 ± 0.93 | 3.33 ± 0.77 | 98.67 |
Fig. 2 The variation of mean canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii during the whole growth season along the horizontal distance of plots from slope top.
Fig. 3 Variations of monthly canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii during growing season along the horizontal distance of plots from slope top.
Fig. 4 Variations of the ratio of plot leaf area index (LAI) to the whole slope average of Larix gmelinii var. principis- rupprechtii during different months along the horizontal distance of plots from slope top.
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -6 × 10-9x3 + 3 × 10-6x2 - 0.0005x + 1.0530 | 0.609 | 0.008 |
6 | y = 3 × 10-10x3 - 4 × 10-6x2 + 0.0015x + 0.9213 | 0.432 | 0.071 |
7 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0027x + 0.8716 | 0.421 | 0.078 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0026x + 0.8722 | 0.401 | 0.094 |
9 | y = -1 × 10-9x3 + 6 × 10-7x2 + 0.0001x + 0.9607 | 0.452 | 0.058 |
10 | y = -1 × 10-8x3 + 7 × 10-6x2 + 0.0009x + 0.5828 | 0.800 | < 0.001 |
Table 2 Numerical relationship between the ratio of plot leaf area index (LAI) to the whole slope average (y) and the horizontal length (x) in different months
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -6 × 10-9x3 + 3 × 10-6x2 - 0.0005x + 1.0530 | 0.609 | 0.008 |
6 | y = 3 × 10-10x3 - 4 × 10-6x2 + 0.0015x + 0.9213 | 0.432 | 0.071 |
7 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0027x + 0.8716 | 0.421 | 0.078 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0026x + 0.8722 | 0.401 | 0.094 |
9 | y = -1 × 10-9x3 + 6 × 10-7x2 + 0.0001x + 0.9607 | 0.452 | 0.058 |
10 | y = -1 × 10-8x3 + 7 × 10-6x2 + 0.0009x + 0.5828 | 0.800 | < 0.001 |
Fig. 5 Variations of the moving average of canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii during different months along the horizontal distance from slope top.
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -1 × 10-9x3 + 4 × 10-8x2 - 5 × 10-5x + 2.9057 | 0.825 | < 0.001 |
6 | y = 1 × 10-9x3 - 5 × 10-6x2 + 0.0025x + 3.2363 | 0.872 | < 0.001 |
7 | y = 6 × 10-9x3 - 9 × 10-6x2 + 0.0034x + 3.3118 | 0.915 | < 0.001 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0042x + 3.2982 | 0.932 | < 0.001 |
9 | y = 2 × 10-9x3 - 1 × 10-6x2 + 0.0005x + 2.7492 | 0.938 | < 0.001 |
10 | y = -7 × 10-9x3 + 5 × 10-6x2 - 9 × 10-5x + 0.6438 | 0.988 | < 0.001 |
Table 3 Numerical relationship between the moving average (y) of canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii and the horizontal length (x) in different months
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -1 × 10-9x3 + 4 × 10-8x2 - 5 × 10-5x + 2.9057 | 0.825 | < 0.001 |
6 | y = 1 × 10-9x3 - 5 × 10-6x2 + 0.0025x + 3.2363 | 0.872 | < 0.001 |
7 | y = 6 × 10-9x3 - 9 × 10-6x2 + 0.0034x + 3.3118 | 0.915 | < 0.001 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0042x + 3.2982 | 0.932 | < 0.001 |
9 | y = 2 × 10-9x3 - 1 × 10-6x2 + 0.0005x + 2.7492 | 0.938 | < 0.001 |
10 | y = -7 × 10-9x3 + 5 × 10-6x2 - 9 × 10-5x + 0.6438 | 0.988 | < 0.001 |
月份 Month | 胸径 Diameter at breast height | 树高 Tree height | 密度 Stand density | 海拔 Elevation | 坡度 Slope degree | 气温 Air temperature | 辐射强度 Radiant intensity | 风速 Wind speed | 土壤水分 Soil moisture | 容重 Bulk density | 持水能力 Water holding capacity | 总孔隙度 Porosity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 0.480 | 0.341 | 0.037 | 0.692** | -0.365 | 0.692** | 0.692** | 0.692** | 0.457 | -0.133 | 0.344 | 0.323 |
6 | 0.234 | 0.296 | 0.109 | 0.366 | -0.163 | -0.366 | 0.366 | 0.366 | 0.530* | -0.078 | 0.237 | 0.247 |
7 | 0.280 | 0.326 | 0.097 | 0.326 | -0.177 | -0.326 | 0.326 | 0.326 | 0.629** | -0.177 | 0.259 | 0.295 |
8 | 0.299 | 0.379 | 0.048 | 0.284 | -0.157 | -0.284 | 0.284 | 0.284 | 0.527* | -0.178 | 0.226 | 0.259 |
9 | -0.325 | 0.069 | 0.356 | -0.668** | 0.622* | 0.668** | -0.668* | -0.668* | -0.093 | 0.378 | -0.601* | -0.611* |
10 | -0.495 | 0.009 | 0.290 | -0.892** | 0.641** | 0.892** | -0.892** | -0.892** | -0.644** | 0.483 | -0.682** | -0.669** |
Table 4 Correlation of canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii with factors of vegetation, landform, exposure and microclimate in different months
月份 Month | 胸径 Diameter at breast height | 树高 Tree height | 密度 Stand density | 海拔 Elevation | 坡度 Slope degree | 气温 Air temperature | 辐射强度 Radiant intensity | 风速 Wind speed | 土壤水分 Soil moisture | 容重 Bulk density | 持水能力 Water holding capacity | 总孔隙度 Porosity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 0.480 | 0.341 | 0.037 | 0.692** | -0.365 | 0.692** | 0.692** | 0.692** | 0.457 | -0.133 | 0.344 | 0.323 |
6 | 0.234 | 0.296 | 0.109 | 0.366 | -0.163 | -0.366 | 0.366 | 0.366 | 0.530* | -0.078 | 0.237 | 0.247 |
7 | 0.280 | 0.326 | 0.097 | 0.326 | -0.177 | -0.326 | 0.326 | 0.326 | 0.629** | -0.177 | 0.259 | 0.295 |
8 | 0.299 | 0.379 | 0.048 | 0.284 | -0.157 | -0.284 | 0.284 | 0.284 | 0.527* | -0.178 | 0.226 | 0.259 |
9 | -0.325 | 0.069 | 0.356 | -0.668** | 0.622* | 0.668** | -0.668* | -0.668* | -0.093 | 0.378 | -0.601* | -0.611* |
10 | -0.495 | 0.009 | 0.290 | -0.892** | 0.641** | 0.892** | -0.892** | -0.892** | -0.644** | 0.483 | -0.682** | -0.669** |
Fig. 1 The relationship between the leaf area index (LAI) increment of Larix gmelinii var. principis-rupprechtii and soil moisture of 0-100 cm layer in June-August.
样地 Plot | 海拔 Elevation (m) | 土壤温度 Soil temperature (℃) | 饱和持水量 Water holding capacity (%) | 总孔隙度 Porosity (%) |
---|---|---|---|---|
1 | 2 471.4 | 8.3 | 65.8 | 59.0 |
9 | 2 372.6 | 8.5 | 66.1 | 58.9 |
16 | 2 275.6 | 9.3 | 61.3 | 56.3 |
Table 1 The water holding capacity, total porosity and mean temperature in Sept. 2015 of the 0-100 cm soil layer of plot 1, plot 9 and plot 16
样地 Plot | 海拔 Elevation (m) | 土壤温度 Soil temperature (℃) | 饱和持水量 Water holding capacity (%) | 总孔隙度 Porosity (%) |
---|---|---|---|---|
1 | 2 471.4 | 8.3 | 65.8 | 59.0 |
9 | 2 372.6 | 8.5 | 66.1 | 58.9 |
16 | 2 275.6 | 9.3 | 61.3 | 56.3 |
[1] | Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010). Forest structure and live aboveground biomass variation along elevational gradient of tropical Atlantic moist forest (Brazil).Forest Ecology and Management, 260, 679-691. |
[2] | Asner GP, Scurlock JMO, Hicke JA (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies.Global Ecology and Biogeography, 12, 191-205. |
[3] | Behera SK, Srivastava P, Pathre UV, Tuli R (2010). An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 plant canopy analyzer.Agricultural and Forest Meteorology, 150, 307-311. |
[4] | Bequet R, Campioli M, Kint V, Muys B, Bogaert J, Ceulemans R (2012). Spatial variability of leaf area index in homogeneous forests relates to local variation in tree characteristics.Forest Science, 58, 633-640. |
[5] | Berterretche M, Hudak AT, Cohen WB, Maiersperger TK, Gower ST, Dungan J (2005). Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.Remote Sensing of Environment, 96, 49-61. |
[6] | Bulcock HH, Jewitt GPW (2010). Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception.Hydrology and Earth System Science, 14, 383-392. |
[7] | Burrows SN, Gower ST, Clayton MK, Mackay DS, Ahl DE, Norman JM, Diak G (2002). Application of geostatistics to characterize leaf area index (LAI) from flux tower to landscape scales using a cyclic sampling design.Ecosystems, 5, 667-679. |
[8] | Cox PM, Betts RA, Bunton CB, Essery PLH, Rowntree PR, Smith J (1999). The impact of new land surface physics on the GCM simulation of climate and climate sensitivity.Climate Dynamics, 15, 183-203. |
[9] | Deng XX, Wang YN, Wang YH, Wang ZC, Xiong W, Yu PT, Zhang T (2016). Slope variation and scale effect of tree height and DBH of Larix principis-rupprechtii plantations along a slope: A case study of Xiangshuihe watershed of Liupan Mountains.Journal of Central South University of Forestry & Technology, 36(5), 121-128. (in Chinese with English abstract)[邓秀秀, 王云霓, 王彦辉, 王忠诚, 熊伟, 于澎涛, 张桐 (2016). 华北落叶松人工林树高和胸径的坡位差异与坡面尺度效应——以六盘山香水河小流域为例. 中南林业科技大学学报, 36(5), 121-128.] |
[10] | Dong MY, Jiang Y, Zhang WT, Yang Y, Yang H (2011). Effect of alpine treeline conditions on the response of the stem radial variation of Picea Meyeri Rebd.Polish Journal of Ecology, 59, 729-739. |
[11] | Han XS, Deng LL, Wang YH, Xiong W, Li ZH, Liu Q, Wang YB, Sun H (2015). Variation of aboveground biomass of Larix principis-rupprechtii plantation along slopes in the Diediegou watershed of Liupan Mountains.Scientia Silvae Sinicae, 51(3), 132-139. (in Chinese with English abstract)[韩新生, 邓莉兰, 王彦辉, 熊伟, 刘振华, 刘千, 王艳兵, 孙浩 (2015). 六盘山叠叠沟华北落叶松人工林地上生物量的坡面变化. 林业科学, 51(3), 132-139.] |
[12] | Granier A, Bréda N, Biron P, Villette S (1999). A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands.Ecological Modelling, 116, 269-283. |
[13] | Granier A, Loustau D, Bréda N (2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index.Annals of Forest Science, 57, 755-765. |
[14] | Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004). Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography.Agricultural and Forest Meteorology, 121, 19-35. |
[15] | Körner C (1999). Alpine Plant Life: Functional and Plant Ecology of High Mountain Ecosystems. Springer-Verlag, New York. |
[16] | Liu YH, Wang YH, Yu PT, Xiong W, Mo F, Wang ZY (2011). Biomass and its allocation of the main vegetation types in Liupan Mountains.Forest Research, 24, 443-452. (in Chinese with English abstract)[刘延惠, 王彦辉, 于澎涛, 熊伟, 莫菲, 王占印 (2011). 六盘山主要植被类型的生物量及其分配. 林业科学研究, 24, 443-452.] |
[17] | Lü YL, Liu SR, Sun PS, Zhang GB, Zhang RP (2007). Seasonal and spatial variations of leaf area index of sub-alpine dark coniferous forest during growing season in western Sichuan.Scientia Silvae Sinicae, 43(8), 1-7. (in Chinese with English abstract)[吕瑜良, 刘世荣, 孙鹏森, 张国斌, 张瑞蒲 (2007). 川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征. 林业科学, 43(8), 1-7.] |
[18] | Maass JM, Vose JM, Swank WT, Martínez-Yrízar A (1995). Seasonal changes of leaf area index (LAI) in a tropical deciduous forest in west Mexico.Forest Ecology and Management, 74, 171-180. |
[19] | Nasahara KN, Muraoka H, Nagai S, Mikami H (2008). Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest.Agricultural and Forest Meteorology, 148, 1136-1146. |
[20] | Qiu Y, Fu BJ, Wang J, Zhang XL, Meng QH (2007). Spatiotemporal variation of soil moisture and its relation to environmental factors.Chinese Journal of Ecology, 26, 100-107. (in Chinese with English abstract)[邱扬, 傅伯杰, 王军, 张希来, 孟庆华 (2007). 土壤水分时空变异及其与环境因子的关系. 生态学杂志, 26, 100-107.] |
[21] | Running SW, Coughlan JC (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes.Ecological Modelling, 42, 347-367. |
[22] | Staelens J, de Schrijver A, Verheyen K, Verhoest NEC (2006). Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover.Journal of Hydrology, 330, 651-662. |
[23] | State Forest Administration (2000). Forestry Industry Standard Analytical Method of Forest Soil. Standards Press of China, Beijing. (in Chinese)[国家林业局 (2000). 中华人民共和国林业行业标准——森林土壤分析方法. 中国标准出版社, 北京.] |
[24] | Tong HQ, Wang YJ, Wang YH, Yu PT, Xiong W, Xu LH, Zhou Y (2011). The Spatio-temporal variation of LAI of the Larix principis-rupprechtii plantation ecosystems at Diediegou of Liupan Mountains of northwest China.Forest Research, 24(1), 13-20. (in Chinese with English abstract)[童鸿强, 王玉杰, 王彦辉, 于澎涛, 熊伟, 徐丽宏, 周杨 (2011). 六盘山叠叠沟华北落叶松人工林叶面积指数的时空变化特征. 林业科学研究, 24(1), 13-20.] |
[25] | Wang YN, Deng XX, Wang YH, Cao GX, Yu PT, Xiong W, Xu LH (2016). The slope scale effect of canopy LAI of Larix principis-rupprechtii plantation at the south side of Liupan Mountains.Acta Ecologica Sinica, 36, 3564-3571. (in Chinese with English abstract)[王云霓, 邓秀秀, 王彦辉, 曹恭祥, 于澎涛, 熊伟, 徐丽宏 (2016). 六盘山南坡华北落叶松人工林冠层LAI的坡面尺度效应. 生态学报, 36, 3564-3571.] |
[26] | Yao DD, Lei XD, Yu L, Lu J, Fu LY, Yu RG (2015). Spatial heterogeneity of leaf area index of mixed spruce-fir-deciduous stands in northeast China.Acta Ecologica Sinica, 35, 71-79. (in Chinese with English abstract)[姚丹丹, 雷相东, 余黎, 卢军, 符立勇, 俞锐刚 (2015). 云冷杉针阔混交林叶面积指数的空间异质性. 生态学报, 35, 71-79.] |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2616
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn