Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (2): 171-179.DOI: 10.17521/cjpe.2023.0009 cstr: 32100.14.cjpe.2023.0009
• Research Articles • Previous Articles Next Articles
RU Ya-Qian1,2,*(), XUE Jian-Guo2,*, GE Ping2,3, LI Yu-Lin2,4, LI Dong-Xu1,2, HAN Peng2, YANG Tian-Run2,5, CHU Wei6, CHEN Zhang7, ZHANG Xiao-Lin1,**(
), LI Ang2,**(
), HUANG Jian-Hui2,4
Received:
2023-01-11
Accepted:
2023-05-30
Online:
2024-02-28
Published:
2024-02-28
Contact:
** (About author:
* Contributed equally to this work
Supported by:
RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe[J]. Chin J Plant Ecol, 2024, 48(2): 171-179.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0009
Fig. 1 Layout of plots of the experiment for intensive rotational grazing study in Xilin Gol League. CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing.
Fig. 2 Effects of different grazing managements on biomass, richness, height and coverage in plant communities (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 3 Effects of different grazing managements on biomass and its proportion of plant functional groups (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. AB, annuals and biennials; PB, perennial bunch grasses; PF, perennial forbs; PR, perennial rhizome grasses; SS, dwarf shrubs and semi-shrubs. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 4 Effects of different grazing managements on biomass and proportion of dominant species in plant communities (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 5 Effects of different grazing managements on biomass of three indicative functional groups, Leguminosae, Allium spp. and Cleistogenes spp. in typical steppe (mean ± SE). CG, continuous grazing; CK, no grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 6 Effects of different grazing managements on the putting mass of sheep (mean ± SE). CG, continuous grazing; IG, intensive rotational grazing; TG, traditional rotational grazing. Group1, initial mass of sheep ≥ 40 kg; Group2, initial mass of sheep < 40 kg. Different lowercase letters indicate significant differences (p < 0.05).
[1] | Aarons SR, O’Connor CR, Hosseini HM, Gourley CJP (2009). Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems. Nutrient Cycling in Agroecosystems, 84, 81-92. |
[2] | Badgery WB (2017). Longer rest periods for intensive rotational grazing limit diet quality of sheep without enhancing environmental benefits. African Journal of Range & Forage Science, 34, 99-109. |
[3] | Badgery WB, Millar GD, Broadfoot K, Michalk DL, Cranney P, Mitchell D, van de Ven R (2017). Increased production and cover in a variable native pasture following intensive grazing management. Animal Production Science, 57, 1812-1823. |
[4] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[5] |
Boone RB, Conant RT, Sircely J, Thornton PK, Herrero M (2018). Climate change impacts on selected global rangeland ecosystem services. Global Change Biology, 24, 1382-1393.
DOI PMID |
[6] | Briske DD, Bestelmeyer BT, Brown JR (2014). Savory’s unsubstantiated claims should not be confused with multipaddock grazing. Rangelands, 36, 39-42. |
[7] | Briske DD, Bestelmeyer BT, Brown JR, Fuhlendorf SD, Wayne PH (2013). The savory method can not green deserts or reverse climate change. Rangelands, 35, 72-74. |
[8] | Briske DD, Sayre NF, Huntsinger L, Fernandez-Gimenez M, Budd B, Derner JD (2011). Origin, persistence, and resolution of the rotational grazing debate: integrating human dimensions into rangeland research. Rangeland Ecology & Management, 64, 325-334. |
[9] | Calle Z, Murgueitio E, Chará J (2012). Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva, 63, 31-40. |
[10] | Chapman DF, Parsons AJ, Cosgrove GP, Barker DJ, Marotti DM, Venning KJ, Rutter SM, Hill J, Thompson AN (2007). Impacts of spatial patterns in pasture on animal grazing behavior, intake, and performance. Crop Science, 47, 399-415. |
[11] | Cox F, Badgery WB, Kemp DR, Krebs G (2017). Seasonal diet selection by ewes grazing within contrasting grazing systems. Animal Production Science, 57, 1824-1836. |
[12] | Cutrim Jr. JA, Cavalcante ACR, Cândido MJD, Silva GL, Elvira Vieira Oliveira L, Vasconcelos ECG, Mesquita TMO (2013). Biomass flow in Tifton-85 bermudagrass canopy subjected to different management strategies under rotational grazing with dairy goats. Revista Brasileira de Zootecnia-Brazilian Journal of Animal Science, 42, 77-86. |
[13] | Dong SK, Yang MY, Ren JZ, Shang ZH, Zhao XY, Dong QM, Liu WT, Renqinduanzhi, Dou SY, Zhou XL, Tudanjia, Shi DJ (2020). Sustainable grassland management based on grazing system unit: concepts and models. Pratacultural Science, 37, 403-412. |
[董世魁, 杨明岳, 任继周, 尚占环, 赵昕月, 董全民, 刘文亭, 仁钦端治, 窦声云, 周学丽, 土旦加, 史德军 (2020). 基于放牧系统单元的草地可持续管理: 概念与模式. 草业科学, 37, 430-412.] | |
[14] | Dong YX, Li A, Xue JG, Pan QM, Huang JH (2021). Mobility loss and its restoration in China grasslands. Chinese Journal of Applied Ecology, 32, 406-411. |
[董寅肖, 李昂, 薛建国, 潘庆民, 黄建辉 (2021). 中国牧区草地移动性利用的丧失和重建. 应用生态学报, 32, 406-411.]
DOI |
|
[15] | Gao L, Zhu QF, Yan ZJ, Wang YQ, Hou XY, Dai YT (2017). Effects of grazing on plant biomass and the carbon density of vegetation and soil in the Artemisia ordosica shrubland of the Ordos Plateau. Acta Ecologica Sinica, 37, 3074-3083. |
[高丽, 朱清芳, 闫志坚, 王育青, 侯向阳, 戴雅婷 (2017). 放牧对鄂尔多斯高原油蒿草场生物量及植被-土壤碳密度的影响. 生态学报, 37, 3074-3083.] | |
[16] | Han GD, Li QF, Wei ZJ, Aotegen (2004). Response of intake and liveweight of sheep to grazing systems on a family ranch scale. Scientia Agricultura Sinica, 37, 744-750. |
[韩国栋, 李勤奋, 卫智军, 敖特根 (2004). 家庭牧场尺度上放牧制度对绵羊摄食和体重的影响. 中国农业科学, 37, 744-750.] | |
[17] | Hobbs RJ, Huenneke LF (1992). Disturbance, diversity, and invasion: implications for conservation. Conservation Biology, 6, 324-337. |
[18] |
Kemp DR, Han GD, Hou XY, Michalk DL, Hou FJ, Wu JP, Zhang YJ (2013). Innovative grassland management systems for environmental and livelihood benefits. Proceedings of the National Academy of Sciences of the United States of America, 110, 8369-8374.
DOI PMID |
[19] |
Lerner AM, Zuluaga AF, Chará J, Etter A, Searchinger T (2017). Sustainable cattle ranching in practice: moving from theory to planning in Colombia’s livestock sector. Environmental Management, 60, 176-184.
DOI PMID |
[20] | Li A, Chen S (2021). Loss of density dependence underpins decoupling of livestock population and plant biomass in intensive grazing systems. Ecological Applications, 31, e02450. DOI: 10.1002/eap.2450. |
[21] | Li A, Wang Y, Xue JG, Ren TT, Wei CZ, Tian QY, Bai WM, Bai YF, Huang JH, Jiang Y, Cheng YC, Sun HL, Xu ZW, Zhao YJ, Han XG (2019). Principles, practices and effects of ecological restoration in the wind-blown sand hazards of North China. Acta Ecologica Sinica, 39, 7452-7462. |
[李昂, 王扬, 薛建国, 任婷婷, 魏存争, 田秋英, 白文明, 白永飞, 黄建辉, 姜勇, 程玉臣, 孙海莲, 徐柱文, 赵玉金, 韩兴国 (2019). 北方风沙区生态修复的科学原理、工程实践和恢复效果. 生态学报, 39, 7452-7462.] | |
[22] | Mann C, Sherren K (2018). Holistic management and adaptive grazing: a trainers’ view. Sustainability, 10, 1848. DOI: 10.3390/su10061848. |
[23] | McCarthy B, Pierce KM, Delaby L, Brennan A, Fleming C, Horan B (2013). The effect of stocking rate and calving date on grass production, utilization and nutritive value of the sward during the grazing season. Grass and Forage Science, 68, 364-377. |
[24] | Moe SR, Wegge P (2008). Effects of deposition of deer dung on nutrient redistribution and on soil and plant nutrients on intensively grazed grasslands in lowland Nepal. Ecological Research, 23, 227-234. |
[25] | Papanastasis VP (2009). Restoration of degraded grazing lands through grazing management: Can it work? Restoration Ecology, 17, 441-445. |
[26] | Ren JZ (2012). Grazing, the basic form of grassland ecosystem and its transformation. Journal of Natural Resources, 27, 1259-1275. |
[任继周 (2012). 放牧, 草原生态系统存在的基本方式——兼论放牧的转型. 自然资源学报, 27, 1259-1275.]
DOI |
|
[27] | Savory A (1983). The savory grazing method or holistic resource management. Rangelands, 5, 155-159. |
[28] | Savory A, Parsons SD (1980). The Savory grazing method. Rangelands, 2, 234-237. |
[29] | Shen HH, Zhu YK, Zhao X, Geng XQ, Gao SQ, Fang JY (2016). Analysis of current grassland resources in China. Chinese Science Bulletin, 61, 139-154. |
[沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 (2016). 中国草地资源的现状分析. 科学通报, 61, 139-154.] | |
[30] |
Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu C (2019). Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116, 6187-6192.
DOI PMID |
[1] | QIN Jia-Chen, WANG Huan, ZHU Jiang, WANG Yang, TIAN Chen, BAI Yong-Fei, YANG Pei-Zhi, ZHENG Shu-Xia. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects [J]. Chin J Plant Ecol, 2024, 48(7): 858-871. |
[2] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[3] | LÜ Ya-Xiang, QI Zhi-Yan, LIU Wei, SUN Jia-Mei, PAN Qing-Min. Effects of nitrogen and phosphorus addition at early-spring and middle-summer on ecosystem carbon exchanges of a degraded community in Nei Mongol typical steppe [J]. Chin J Plant Ecol, 2021, 45(4): 334-344. |
[4] | XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(11): 1138-1153. |
[5] | MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565. |
[6] | TANG Yong-Kang, WU Yan-Tao, WU Kui, GUO Zhi-Wei, LIANG Cun-Zhu, WANG Min-Jie, CHANG Pei-Jing. Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities [J]. Chin J Plant Ecol, 2019, 43(5): 408-417. |
[7] | YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2018, 42(3): 327-336. |
[8] | QIAO Li-Qing, TIAN Da-Shuan, WAN Hong-Wei, BAOYIN Taogetao, PAN Qing-Min. Growth and reproductive strategies of Thalictrum petaloideum under different stocking rates [J]. Chin J Plant Ecol, 2014, 38(8): 878-887. |
[9] | LI Wen-Huai, ZHENG Shu-Xia, BAI Yong-Fei. Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia [J]. Chin J Plant Ecol, 2014, 38(2): 178-187. |
[10] | YANG Jing, CHU Peng-Fei, CHEN Di-Ma, WANG Ming-Jiu, BAI Yong-Fei. Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland [J]. Chin J Plant Ecol, 2014, 38(2): 188-200. |
[11] | BAI Xue, CHENG Jun-Hui, ZHENG Shu-Xia, ZHAN Shu-Xia, BAI Yong-Fei. Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe [J]. Chin J Plant Ecol, 2014, 38(2): 103-115. |
[12] | LIU Jue-Hong, GAO Hui, ZHANG Li-Hong, CHEN Li-Ping, ZHAO Nian-Xi, GAO Yu-Bao. Comparative analysis of inter-specific association within the Stipa grandis-S. krylovii community in typical steppe of Inner Mongolia, China [J]. Chin J Plant Ecol, 2010, 34(9): 1016-1024. |
[13] | ZHANG Xiao-Na, HADA ChaoLu, PAN Qing-Min. Adaptive regulation in reproductive strategy of two bunchgrasses under mowing disturbance in Inner Mongolia grassland [J]. Chin J Plant Ecol, 2010, 34(3): 253-262. |
[14] | YIN Xiao-Rui, LIANG Cun-Zhu, WANG Li-Xin, WANG Wei, LIU Zhong-Ling, LIU Xiao-Ping. Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China [J]. Chin J Plant Ecol, 2010, 34(1): 39-47. |
[15] | YANG Hao, BAI Yong-Fei, LI Yong-Hong, HAN Xing-Guo. RESPONSE OF PLANT SPECIES COMPOSITION AND COMMUNITY STRUCTURE TO LONGTERM GRAZING IN TYPICAL STEPPE OF INNER MONGOLIA [J]. Chin J Plant Ecol, 2009, 33(3): 499-507. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 561
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 507
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn