Please wait a minute...
Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism
Li-Jiao XU, Xue-Lian JIANG, Zhi-Peng HAO, Tao LI, Zhao-Xiang WU, Bao-Dong CHEN
Chin J Plant Ecol    2017, 41 (8): 815-825.   DOI: 10.17521/cjpe.2017.0018
Abstract   (2021 HTML170 PDF(pc) (2693KB)(1386)  

Aims Arbuscular mycorrhizal (AM) symbiosis plays an important role in plant adaptation to phosphorus (P) deficiency. The mycorrhizal fungi can directly regulate P stress response of the host plants, and can also indirectly influence neighbor plants via AM exudates. This study aimed to reveal the regulation mechanisms of plant response to P deficiency by AM associations. Methods In a compartmentation cultivation experiment with Zea mays ‘B73’ and AM fungus Rhizophagus irregularis ‘DAOM197198’, we investigated mycorrhizal effects on plant P nutrition and the expression of plant and fungal genes related to P and carbon (C) metabolisms under both low P (10 mg?kg-1) and high P (100 mg?kg-1) conditions. The cultivation system consisted of three compartments, namely donor compartment, buffer compartment and receiver compartment divided by two pieces of microporous filters with pore size of 0.45 μm. Maize plant in donor compartment inoculated with AM fungus served as a source of AM exudates. The microporous filters could restrict the development of extraradical mycelium of AM fungi, but allow diffusion of AM exudates. Real-time PCR was performed to quantify the gene expression levels both in maize plants and AM fungi. Important findings The experimental results indicated that under low P conditions mycorrhizal colonization increased plant dry weight and P concentration in donor plants, and up-regulated plant genes encoding P transporters Pht1;2, Pht1;6, phosphoenolpiruvate carboxylase (PEPC), inorganic pyrophosphatase (TC289), glycerol-3-phosphate transporter (G3PT) and malate synthase (MAS1). The expression of AM fungal genes encoding P transporter (GiPT), GlcNAc transporter (NGT1), GlcNAc kinase (HXK1b), GlcNAc phosphomutase (AGM1), UDP GlcNAc pyrophosphorylase (UAP1), chitin synthase (CHS1), GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) was significantly higher under low P conditions compared with high P conditions. However, for the receiver plants, plant dry mass and P concentration were only significantly increased by higher P addition, while inoculation treatment significantly up-regulated the expression of P transporter genes Pht1;2 and Pht1;6, C metabolism related genes G3PT, PEPC, TC289 and MAS1. The study proved that AM exudates could potentially stimulate plant response to P deficiency by regulating functional genes relevant to P and C metabolisms in the mycorrhizal associations.

Fig. 4 Expression of AM fungal genes relevant to C and P metabolisms under different P levels (mean ± SD). LP refers to low P treatments, HP refers to high P treatments, * indicates significant difference (p < 0.05) between different P levels. GiPT, AM fungal P transporter gene; NGT1, GlcNAc transporter gene, HXK1b, GlcNAc kinase gene; AGM1, GlcNAc phosphomutase gene; UAP1, UDP GlcNAc pyrophosphorylase gene; CHS1, chitin synthase gene; DAC1, GlcNAc-6-phosphate deacetylase gene; NAG1, glucosamine- 6-phosphate isomerase gene.
Extracts from the Article
图4   不同磷水平下AM真菌碳磷代谢相关基因表达(平均值±标准偏差)。LP为低磷处理, HP为高磷处理; *表示不同磷水平之间差异显著(p < 0.05)。GiPT, AM真菌磷转运蛋白基因; NGT1, N-乙酰葡糖胺(GlcNAc)转运蛋白基因; HXK1b, GlcNAc激酶b基因; AGM1, GlcNAc磷酸变位酶基因; UAP1, UDP-GlcNAc焦磷酸化酶基因; CHS1, 几丁质合酶基因; DAC1, GlcNAc-6-磷酸去乙酰化酶基因; NAG1, 葡糖胺-6-磷酸异构酶基因。
Other Images/Table from this Article