Please wait a minute...
IMAGE/TABLE DETAILS
Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism
Li-Jiao XU, Xue-Lian JIANG, Zhi-Peng HAO, Tao LI, Zhao-Xiang WU, Bao-Dong CHEN
Chin J Plant Ecol    2017, 41 (8): 815-825.   DOI: 10.17521/cjpe.2017.0018
Abstract   (2021 HTML170 PDF(pc) (2693KB)(1386)  

Aims Arbuscular mycorrhizal (AM) symbiosis plays an important role in plant adaptation to phosphorus (P) deficiency. The mycorrhizal fungi can directly regulate P stress response of the host plants, and can also indirectly influence neighbor plants via AM exudates. This study aimed to reveal the regulation mechanisms of plant response to P deficiency by AM associations. Methods In a compartmentation cultivation experiment with Zea mays ‘B73’ and AM fungus Rhizophagus irregularis ‘DAOM197198’, we investigated mycorrhizal effects on plant P nutrition and the expression of plant and fungal genes related to P and carbon (C) metabolisms under both low P (10 mg?kg-1) and high P (100 mg?kg-1) conditions. The cultivation system consisted of three compartments, namely donor compartment, buffer compartment and receiver compartment divided by two pieces of microporous filters with pore size of 0.45 μm. Maize plant in donor compartment inoculated with AM fungus served as a source of AM exudates. The microporous filters could restrict the development of extraradical mycelium of AM fungi, but allow diffusion of AM exudates. Real-time PCR was performed to quantify the gene expression levels both in maize plants and AM fungi. Important findings The experimental results indicated that under low P conditions mycorrhizal colonization increased plant dry weight and P concentration in donor plants, and up-regulated plant genes encoding P transporters Pht1;2, Pht1;6, phosphoenolpiruvate carboxylase (PEPC), inorganic pyrophosphatase (TC289), glycerol-3-phosphate transporter (G3PT) and malate synthase (MAS1). The expression of AM fungal genes encoding P transporter (GiPT), GlcNAc transporter (NGT1), GlcNAc kinase (HXK1b), GlcNAc phosphomutase (AGM1), UDP GlcNAc pyrophosphorylase (UAP1), chitin synthase (CHS1), GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) was significantly higher under low P conditions compared with high P conditions. However, for the receiver plants, plant dry mass and P concentration were only significantly increased by higher P addition, while inoculation treatment significantly up-regulated the expression of P transporter genes Pht1;2 and Pht1;6, C metabolism related genes G3PT, PEPC, TC289 and MAS1. The study proved that AM exudates could potentially stimulate plant response to P deficiency by regulating functional genes relevant to P and C metabolisms in the mycorrhizal associations.


Fig. 6 Expression of genes relevant to C and P metabolism in maize roots from receiver compartment under different P levels (mean ± SD). LP and HP refer to low P level (10 mg?kg-1) and high P level (100 mg?kg-1) respectively. AMR and NMR represent receiver plants with and without AM exudates respectively. # indicates significant difference (p < 0.05) between different P levels, while $ indicates significant difference (p < 0.05) between inoculation treatments under the same P level. Pht1;2, Pht1;6, P transporter genes; PEPC, phosphoenolpiruvate carboxylase gene; TC289, inorganic pyrophosphatase gene; G3PT, glycerol-3-phosphate transporter gene; MAS1, malate synthase gene.
Extracts from the Article
图6   不同磷水平下受体玉米碳磷代谢相关基因表达情况(平均值±标准偏差)。LP和HP分别代表低磷和高磷处理。AMR和NMR代表供体和受体植物受到AM分泌物处理和对照处理。柱形上方标示不同字母代表相应处理之间在5%水平有显著性差异。“#”表示相同接种处理不同磷水平之间在5%水平差异显著, 而“$”代表在相同磷水平下不同接种处理之间在5%水平上差异显著。Pht1;2, Pht1;6, 磷转运蛋白基因; PEPC, 磷酸烯醇式丙酮酸羧化酶基因; G3PT, 甘油-3-磷酸转运蛋白基因; TC289, 无机焦磷酸化酶基因; MAS1, 苹果酸合酶基因。
Other Images/Table from this Article