Chin J Plan Ecolo ›› 2007, Vol. 31 ›› Issue (3): 403-412.doi: 10.17521/cjpe.2007.0049

• Research Articles • Previous Articles     Next Articles


MA Yu-E; XIANG Wen-Hua*; LEI Pi-Feng   

  1. Central South University of Forestry and Technology, Changsha 410004, China
  • Online:2007-05-30 Published:2007-05-30
  • Contact: XIANG Wen-Hua


Stem respiration is an important part of the annual carbon balance of forest ecosystems and consumes ca. 11%-33% of total net daytime carbon assimilation. Because of difficulties in measurement, little attention was paid to stem respiration studies in the past. However, with increasing atmospheric CO2 concentration, studies of stem respiration have become popular. Several methods were applied in earlier studies, including gas exchange measurements and closed method. An open flow system is employed in recent studies. Results from recent research show that the diurnal pattern of stem respiration is bimodal with a midday depression and those rates are the greatest in the growing season. Controlling factors include meteorological factors (e.g., stem temperature, CO2 concentration and humidity) and biological factors (tree species, tree age, and diameter at breast height, sapwood size and nitrogen content in stem). Latitude, altitude and topographic factors indirectly influence respiration rates through meteorological or biological factors, in particular stem temperature. Stem respiration rate is positively correlated with stem temperature. The mechanism of stem respiration and its controlling factors will continue to be subjects of future research. Integration of meteorological and biological factors into models of stem respiration will provide insight into contribution of stem respiration to the carbon balance of forest ecosystems, role of forest ecosystems in reducing CO2 concentration elevation in the atmosphere, response of forest ecosystems to global changes, and development of carbon cycle models of forest ecosystems. These issues and measurement techniques remain challenging and fruitful areas for future research.

No related articles found!
Full text



[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[9] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[10] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .