Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (10): 1064-1073.DOI: 10.3724/SP.J.1258.2014.00100
• Research Articles • Previous Articles Next Articles
MENG Fan-Chao1,2, ZHANG Jia-Hua2,*(), YAO Feng-Mei3
Received:
2014-04-11
Accepted:
2014-06-20
Online:
2014-04-11
Published:
2021-04-20
Contact:
ZHANG Jia-Hua
MENG Fan-Chao, ZHANG Jia-Hua, YAO Feng-Mei. Interactive effects of elevated CO2 concentration and increasing precipitation on yield and growth development in maize[J]. Chin J Plant Ecol, 2014, 38(10): 1064-1073.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00100
Fig. 2 Relative soil moisture under treatments with three CO2 concentration levels and two precipitation levels (means ± SD, n = 3). C550W+15%, CO2 concentration 550 μmol·mol-1 and precipitation +15%; C550W0, CO2 concentration 550 μmol·mol-1 and natural precipitation; C450W+15%, CO2 concentration 450 μmol·mol-1 and precipitation +15%; C450W0, CO2 concentration 450 μmol·mol-1 and natural precipitation; C390W+15%, CO2 concentration 390 μmol·mol-1 and precipitation +15%; C390W0, CO2 concentration 390 μmol·mol-1 and natural precipitation.
处理 Treatment | 平均籽粒产量 Average grain yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 平均生物产量 Average biological yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 经济系数 Economical coefficient |
---|---|---|---|---|---|
C550W+15% | 337.73a | 9.45 | 618.31a | 6.49 | 0.546 2a |
C550W0 | 308.58b | 580.61b | 0.531 5abc | ||
C450W+15% | 313.02b | 9.95 | 585.49b | 8.13 | 0.534 6ab |
C450W0 | 284.70c | 541.46c | 0.525 9bc | ||
C390W+15% | 277.96d | 15.94 | 525.95d | 13.06 | 0.528 5bc |
C390W0(CK) | 239.74e | 465.20e | 0.515 5c |
Table 1 Effects of elevated CO2 concentration and increased precipitation on maize yield
处理 Treatment | 平均籽粒产量 Average grain yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 平均生物产量 Average biological yield (g·plant-1) | 较对照增产 Increase over the CK (%) | 经济系数 Economical coefficient |
---|---|---|---|---|---|
C550W+15% | 337.73a | 9.45 | 618.31a | 6.49 | 0.546 2a |
C550W0 | 308.58b | 580.61b | 0.531 5abc | ||
C450W+15% | 313.02b | 9.95 | 585.49b | 8.13 | 0.534 6ab |
C450W0 | 284.70c | 541.46c | 0.525 9bc | ||
C390W+15% | 277.96d | 15.94 | 525.95d | 13.06 | 0.528 5bc |
C390W0(CK) | 239.74e | 465.20e | 0.515 5c |
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
籽粒产量 Grain yield | 2 | 629.76 | 0.000 | 1 | 455.71 | 0.000 | 2 | 4.50 | 0.035* | ||
生物产量 Biological yield | 2 | 413.79 | 0.000 | 1 | 251.51 | 0.000 | 2 | 5.27 | 0.023* | ||
净光合速率 Net photosynthetic rate | 2 | 133.12 | 0.000 | 1 | 166.57 | 0.000 | 2 | 12.87 | 0.000** | ||
株高 Plant height | 2 | 159.37 | 0.000 | 1 | 125.07 | 0.000 | 2 | 4.23 | 0.041* | ||
穗位高 Ear height | 2 | 3.12 | 0.081 | 1 | 2.10 | 0.173 | 2 | 0.07 | 0.937 | ||
茎粗 Stem diameter | 2 | 9.21 | 0.004 | 1 | 4.08 | 0.066 | 2 | 0.19 | 0.833 | ||
叶面积 Leaf area | 2 | 726.76 | 0.000 | 1 | 639.41 | 0.000 | 2 | 30.89 | 0.000** | ||
干物质积累量 Dry matter accumulation | 2 | 582.72 | 0.000 | 1 | 316.37 | 0.000 | 2 | 5.48 | 0.020* |
Table 2 Two-way ANOVA on the interactive effects between elevated CO2 concentration and increased precipitation on maize
变量 Variable | CO2浓度 CO2 concentration | 降水量 Precipitation | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
籽粒产量 Grain yield | 2 | 629.76 | 0.000 | 1 | 455.71 | 0.000 | 2 | 4.50 | 0.035* | ||
生物产量 Biological yield | 2 | 413.79 | 0.000 | 1 | 251.51 | 0.000 | 2 | 5.27 | 0.023* | ||
净光合速率 Net photosynthetic rate | 2 | 133.12 | 0.000 | 1 | 166.57 | 0.000 | 2 | 12.87 | 0.000** | ||
株高 Plant height | 2 | 159.37 | 0.000 | 1 | 125.07 | 0.000 | 2 | 4.23 | 0.041* | ||
穗位高 Ear height | 2 | 3.12 | 0.081 | 1 | 2.10 | 0.173 | 2 | 0.07 | 0.937 | ||
茎粗 Stem diameter | 2 | 9.21 | 0.004 | 1 | 4.08 | 0.066 | 2 | 0.19 | 0.833 | ||
叶面积 Leaf area | 2 | 726.76 | 0.000 | 1 | 639.41 | 0.000 | 2 | 30.89 | 0.000** | ||
干物质积累量 Dry matter accumulation | 2 | 582.72 | 0.000 | 1 | 316.37 | 0.000 | 2 | 5.48 | 0.020* |
处理 Treatment | 穗粒重 Ear kernels weight (g·ear-1) | 百粒重 100-kernel weight (g) | 穗粒数 Kernels per ear | 穗行数 Rows per ear | 行粒数 Kernels per row | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C550W+15% | 346.58a | 45.80a | 750.00a | 18.00a | 42.00a | ||||||||||
C550W0 | 316.34b | 44.13b | 723.67ab | 17.33a | 41.33ab | ||||||||||
C450W+15% | 319.29b | 43.93b | 726.00ab | 18.00a | 40.33ab | ||||||||||
C450W0 | 293.50bc | 43.03b | 685.00abc | 17.33a | 39.33ab | ||||||||||
C390W+15% | 275.41c | 40.67c | 680.00bc | 17.33a | 39.00ab | ||||||||||
C390W0(CK) | 246.55d | 39.20d | 629.33c | 16.67a | 37.67b | ||||||||||
处理 Treatment | 穗长 Ear length (cm) | 穗直径 Ear diameter (cm) | 穗质量 Ear mass (g) | 穗轴直径 diameter (cm) | 穗轴质量 Ear axle mass (g) | 秃尖长 Barren tip (cm) | 穗瘪粒数 Shriveled kernels per ear | ||||||||
C550W+15% | 21.83a | 6.32a | 383.78a | 3.11a | 37.20ab | 3.70ab | 2.67b | ||||||||
C550W0 | 20.48b | 6.05b | 352.27b | 3.02ab | 35.93c | 3.93a | 17.00ab | ||||||||
C450W+15% | 21.11ab | 6.04b | 356.69bc | 2.93bc | 37.40a | 3.53bc | 2.00b | ||||||||
C450W0 | 19.38c | 5.81c | 329.56cd | 2.88bc | 36.07bc | 3.92a | 27.67a | ||||||||
C390W+15% | 18.58c | 5.59d | 310.35d | 2.86c | 34.93cd | 3.31c | 3.67b | ||||||||
C390W0 | 17.34d | 5.17e | 280.92e | 2.85c | 34.37d | 3.61abc | 31.00a |
Table 3 Interactive effects between elevated CO2 concentration and increased precipitation on ear characteristics of maize
处理 Treatment | 穗粒重 Ear kernels weight (g·ear-1) | 百粒重 100-kernel weight (g) | 穗粒数 Kernels per ear | 穗行数 Rows per ear | 行粒数 Kernels per row | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C550W+15% | 346.58a | 45.80a | 750.00a | 18.00a | 42.00a | ||||||||||
C550W0 | 316.34b | 44.13b | 723.67ab | 17.33a | 41.33ab | ||||||||||
C450W+15% | 319.29b | 43.93b | 726.00ab | 18.00a | 40.33ab | ||||||||||
C450W0 | 293.50bc | 43.03b | 685.00abc | 17.33a | 39.33ab | ||||||||||
C390W+15% | 275.41c | 40.67c | 680.00bc | 17.33a | 39.00ab | ||||||||||
C390W0(CK) | 246.55d | 39.20d | 629.33c | 16.67a | 37.67b | ||||||||||
处理 Treatment | 穗长 Ear length (cm) | 穗直径 Ear diameter (cm) | 穗质量 Ear mass (g) | 穗轴直径 diameter (cm) | 穗轴质量 Ear axle mass (g) | 秃尖长 Barren tip (cm) | 穗瘪粒数 Shriveled kernels per ear | ||||||||
C550W+15% | 21.83a | 6.32a | 383.78a | 3.11a | 37.20ab | 3.70ab | 2.67b | ||||||||
C550W0 | 20.48b | 6.05b | 352.27b | 3.02ab | 35.93c | 3.93a | 17.00ab | ||||||||
C450W+15% | 21.11ab | 6.04b | 356.69bc | 2.93bc | 37.40a | 3.53bc | 2.00b | ||||||||
C450W0 | 19.38c | 5.81c | 329.56cd | 2.88bc | 36.07bc | 3.92a | 27.67a | ||||||||
C390W+15% | 18.58c | 5.59d | 310.35d | 2.86c | 34.93cd | 3.31c | 3.67b | ||||||||
C390W0 | 17.34d | 5.17e | 280.92e | 2.85c | 34.37d | 3.61abc | 31.00a |
Fig. 3 Effects on leaf net photosynthetic rate (Pn) of maize by interactive effects between elevated CO2 concentration and increased precipitation (mean ± SD, n = 3). Different small letters indicated significant difference (p < 0.05).
处理 Treatment | 株高 Plant height (cm) | 穗位高 Ear height (cm) | 茎直径 Stem diameter (cm) | 叶面积 Leaf area (cm2·plant-1) | 干物质积累量 Dry matter accumulation (g·plant-1) |
---|---|---|---|---|---|
C550W+15% | 310.28a | 149.93a | 3.18a | 10 482.65a | 459.28a |
C550W0 | 302.54b | 144.86ab | 3.08ab | 9 279.68c | 441.52b |
C450W+15% | 306.92a | 146.52ab | 2.98ab | 9 709.42b | 446.07b |
C450W0 | 293.04c | 143.79ab | 2.88bc | 8 809.41d | 421.54c |
C380W+15% | 290.79c | 141.24ab | 2.87bc | 8 538.79e | 410.55d |
C380W0(CK) | 275.88d | 136.42b | 2.69c | 8 004.22f | 382.19e |
Table 4 Effects on maize growth characteristics by elevated CO2 concentration and increased precipitation
处理 Treatment | 株高 Plant height (cm) | 穗位高 Ear height (cm) | 茎直径 Stem diameter (cm) | 叶面积 Leaf area (cm2·plant-1) | 干物质积累量 Dry matter accumulation (g·plant-1) |
---|---|---|---|---|---|
C550W+15% | 310.28a | 149.93a | 3.18a | 10 482.65a | 459.28a |
C550W0 | 302.54b | 144.86ab | 3.08ab | 9 279.68c | 441.52b |
C450W+15% | 306.92a | 146.52ab | 2.98ab | 9 709.42b | 446.07b |
C450W0 | 293.04c | 143.79ab | 2.88bc | 8 809.41d | 421.54c |
C380W+15% | 290.79c | 141.24ab | 2.87bc | 8 538.79e | 410.55d |
C380W0(CK) | 275.88d | 136.42b | 2.69c | 8 004.22f | 382.19e |
[1] |
Allen Jr LH, Kakani VG, Vu JCV, Boote KJ (2011). Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168,1909-1918.
DOI URL |
[2] |
Cure JD, Acock B (1986). Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology, 38,127-145.
DOI URL |
[3] |
Dong LJ, Sang WG (2012). Effects of simulated warming and precipitation change on seedling emergence and growth of Quercus mongolica in Dongling Mountain, Beijing, China. Chinese Journal of Plant Ecology, 36,819-830. (in Chinese with English abstract)
DOI URL |
[ 董丽佳, 桑卫国 (2012). 模拟增温和降水变化对北京东灵山辽东栎种子出苗和幼苗生长的影响. 植物生态学报, 36,819-820.]
DOI URL |
|
[4] |
Donnelly A, Craigon J, Black CR, Colls JJ, Landon G (2001). Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)? Physiologia Plantarum, 111,501-511.
DOI URL PMID |
[5] |
Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81,417-425.
DOI URL |
[6] |
Ellis RH, Craufurd PQ, Summerfield RJ, Roberts EH (1995). Linear relations between carbon dioxide concentration and rate of development towards flowering in sorghum, cowpea and soybean. Annals of Botany, 75,193-198.
DOI URL |
[7] | Ge TD, Sui FG, Bai LP, Lü YY, Zhou GS (2005). Effects of different soil Water content on the photosynthetic character and pod yields of summer maize. Journal of Shanghai Jiaotong University (Agricultural Science), 23,143-147. (in Chinese with English abstract) |
[ 葛体达, 隋方功, 白莉萍, 吕银燕, 周广胜 (2005). 不同土壤水分对玉米光合特性和产量的影响. 上海交通大学学报(农业科学版), 23,143-147.] | |
[8] |
Geissler N, Hussin S, Koyro HW (2009). Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany, 65,220-231.
DOI URL |
[9] |
Gillon J, Yakir D (2001). Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science, 291,2584-2587.
DOI URL PMID |
[10] |
Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291,15-26.
DOI URL |
[11] | He DY, Wu GC, Liu Q, Zhang PL (2003). Correlation and path analysis of major agronomic character of maize. Journal of Maize Sciences, 11,58-60. (in Chinese with English abstract) |
[ 何代元, 吴广成, 刘强, 张沛力 (2003). 玉米主要农艺性状的相关通径分析. 玉米科学, 11,58-60.] | |
[12] |
Houghton RA (2001). Counting terrestrial sources and sinks of carbon. Climatic Change, 48,525-534.
DOI URL |
[13] |
Hulme M, Osborn TJ, Johns TC (1998). Precipitation sensitivity to global warming: comparison of observations with HadCM2 Simulations. Geophysical Research Letters, 25,3379-3382.
DOI URL |
[14] |
Idso KE, Idso SB (1994). Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agricultural and Forest Meteorology, 69,153-203.
DOI URL |
[15] | IPCC (2001). Climate Change 2001: the carbon cycle and atmospheric carbon dioxide. In: Prentice IC, Farquhar GD eds. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 183-237. |
[16] |
Jones PD, Hulme M (1996). Calculating regional climatic time series for temperature and precipitation: methods and illustrations. International Journal of Climatology, 16,361-377.
DOI URL |
[17] |
Kang SZ, Zhang FC, Hu XT, Zhang JH (2002). Benefits of CO2 enrichment on crop plants are modified by soil water status. Plant and Soil, 238,69-77.
DOI URL |
[18] |
Karl TR, Trenberth KE (2003). Modern global climate change. Science, 302,1719-1723.
DOI URL PMID |
[19] | Lan JH, Song XY, Xie CX, Li MS, Zhang SH, Li XH (2012). QTL analysis of 7 main ear traits in 3 environments in an elite cross of maize (Zea mays L.). Journal of Agricultural Biotechnology, 20,756-765. (in Chinese with English abstract) |
[ 兰进好, 宋希云, 谢传晓, 李明顺, 张世煌, 李新海. 玉米强优势组合7个主要穗部性状在3种环境下的QTL分析. 农业生物技术学报, 20,756-765.] | |
[20] | Leadley PW, Drake BG (1993). Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange. Vegetatio, 104-105. |
[21] |
Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009). Elevated CO2effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60,2859-2876.
DOI URL PMID |
[22] |
Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 140,779-790.
DOI URL PMID |
[23] | Lee JS (2011). Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3and C4 weedy species. Agriculture, Ecosystems & Environment, 140,484-491. |
[24] |
Li FS, Kang SZ, Zhang FC (2003). Effects of CO2enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chinese Journal of Applied Ecology, 14,387-393. (in Chinese with English abstract)
URL PMID |
[ 李伏生, 康绍忠, 张富仓 (2003). [CO2]、氮和水分对春小麦光合、蒸散及水分利用效率的影响. 应用生态学报, 14,387-393.]
PMID |
|
[25] | Li KR, Chen YF, Huang M, Li XB, Ye ZJ (2000). Model studies of the impacts of climate change on land cover and its feedback. Acta Geographica Sinica, 55(Suppl. 1),57-63. (in Chinese with English abstract) |
[ 李克让, 陈育峰, 黄玫, 李晓兵, 叶卓佳 (2000). 气候变化对土地覆被变化的影响及其反馈模型. 地理学报, 55(增刊1),57-63.] | |
[26] | Long SP (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell & Environment, 14,729-739. |
[27] |
Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312,1918-1921.
DOI URL PMID |
[28] |
Manderscheid R, Burkart S, Bramm A, Weigel HJ (2003). Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. European Journal of Agronomy, 19,411-425.
DOI URL |
[29] |
Marc J, Gifford RM (1984). Floral initiation in wheat, sunflower, and sorghum under carbon dioxide enrichment. Canadian Journal of Botany, 62,9-14.
DOI URL |
[30] |
Maroco JP, Edwards GE, Ku MSB (1999). Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta, 210,115-125.
DOI URL PMID |
[31] |
Mauney JR, Fry KE, Guinn G (1978). Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum, and sunflower. Crop Science, 18,259-263.
DOI URL |
[32] |
Onoda Y, Hirose T, Hikosaka K (2007). Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan. Ecological Research, 22,475-484.
DOI URL |
[33] |
Poorter H, Navas ML (2003). Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist, 157,175-198.
DOI URL |
[34] | Reddy AR, Rasineni GK, Raghavendra AS (2010). The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99,46-57. |
[35] |
Rogers A, Ainsworth EA, Leakey ADB (2009). Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 151,1009-1016.
DOI URL PMID |
[36] |
Samarakoon AB, Gifford RM (1995). Soil water content under plants at high CO2 concentration and interactions with the direct CO2effects: a species comparison. Journal of Biogeography, 22,193-202.
DOI URL |
[37] |
Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298,1987-1990.]
DOI URL PMID |
[38] |
Shi YH, Zhou GS, Jiang YL, Wang H, Xu ZZ (2013). Effects of interactive CO2 concentration and precipitation on growth characteristics of Stipa breviflora. Acta Ecologica Sinica, 33,4478-4485. (in Chinese with English abstract)
DOI URL |
[ 石耀辉, 周广胜, 蒋延玲, 王慧, 许振柱 (2013). CO2浓度和降水协同作用对短花针茅生长的影响. 生态学报, 33,4478-4485.]
DOI URL |
|
[39] | Sun GC, Zhao P, Peng SL, Zeng XP (2001). Response of photosynthesis to water stress in four saplings from subtropical forests under elevated atmospheric CO2 concentration. Acta Ecologica Sinica, 21,738-746. (in Chinese with English abstract) |
[ 孙谷畴, 赵平, 彭少麟, 曾小平 (2001). 在高CO2浓度下四种亚热带幼树光合作用对水分胁迫的响应. 生态学报, 21,738-746.] | |
[40] | Tang HT, Lin Y, Ye GC, Chen WQ, Zhang B (2007). Grey correlation degree analysis on yield and main agronomic characters of maize hybrid in Sichuan Province. Journal of Maize Sciences, 15,48-52. (in Chinese with English abstract) |
[ 唐海涛, 林勇, 叶国成, 陈宛秋, 张彪 (2007). 四川省玉米杂交种综合评价及主要农艺性状的关联度分析. 玉米科学, 15,48-52.] | |
[41] | Wall GW, Garcia RL, Wechsung F, Kimball BA (2011). Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley. Agriculture, Ecosystems & Environment, 144,390-404. |
[42] |
Wallace JS (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems and Environment, 82,105-119.
DOI URL |
[43] |
Wang H, Zhou GS, Jiang YL, Shi YH, Xu ZZ (2012). Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora. Chinese Journal of Plant Ecology, 36,597-606. (in Chinese with English abstract)
DOI URL |
[ 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱 (2012). 降水与CO2浓度协同作用对短花针茅光合特性的影响. 植物生态学报, 36,597-606.]
DOI URL |
|
[44] |
Wang JL, Wen XF, Zhao FH, Fang QX, Yang XM (2012). Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species. Chinese Journal of Plant Ecology, 36,438-446. (in Chinese with English abstract)
DOI URL |
[ 王建林, 温学发, 赵风华, 房全孝, 杨新民 (2012). CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 36,438-446.]
DOI URL |
|
[45] | Wang XL, Xu SH, Liang H (1998). The experimental study of the effects of CO2concentration enrichment on growth, development and yield of C3 and C4 crops. Scientia Agricultura Sinica, 31,55-61. (in Chinese with English abstract) |
[ 王修兰, 徐师华, 梁红 (1998). CO2浓度增加对C3、C4作物生育和产量影响的试验研究. 中国农业科学, 31,55-61.] | |
[46] | Wu JD, Wang SL, Zhang JM (2000). A numerical simulation of the impacts of climate change on water and thermal resources in northeast China. Resources Science, 22(6),36-42. (in Chinese with English abstract) |
[ 吴金栋, 王石立, 张建敏 (2000). 未来气候变化对中国东北地区水热条件影响的数值模拟研究. 资源科学, 22(6),36-42.] | |
[47] |
Xu ZZ, Shimizu H, Ito S, Yagasaki Y, Zou CJ, Zhou G, Zheng Y (2014). Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 239,421-435.
DOI URL PMID |
[48] | Yang JH, Mao JC, Li FM, Ran LG, Liu J, Liu SY (2003). Correclation and path analysis on agronomic traits and kernal yield of maize hybrids. Chinese Agricultural Science Bulletin, 19(4),28-30. (in Chinese with English abstract) |
[ 杨金慧, 毛建昌, 李发民, 冉隆贵, 刘健, 刘淑云 (2003). 玉米杂交种农艺性状与籽粒产量的相关和通径分析. 中国农学通报, 19(4),28-30.] | |
[49] | Zhang Q, Zou XK, Xiao FJ, Lu HQ, Liu HB, Zhu CH, An SQ (2006) GB/T20481-2006, Classification of Meteorological Drought. Standardization Press of China, Beijing. (in Chinese) |
[ 张强, 邹旭凯, 肖风劲, 吕厚荃, 刘海波, 祝昌汉, 安顺清 (2006). GB/T20481-2006, 气象干旱等级. 中国标准出版社, 北京.] | |
[50] | Ziska L (2013). Observed changes in soyabean growth and seed yield from Abutilon theophrasti competition as a function of carbon dioxide concentration. Weed Research, 53,140-145. |
[51] | Ziska LH, Bunce JA (1997). Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynthesis Research, 54,199-208. |
[1] | CHENG Ke-Xin, DU Yao, LI Kai-Hang, WANG Hao-Chen, YANG Yan, JIN Yi, HE Xiao-Qing. Genetic mechanism of interaction between maize and phyllospheric microbiome [J]. Chin J Plant Ecol, 2024, 48(2): 215-228. |
[2] | LIU Jian-Xin, LIU Rui-Rui, LIU Xiu-Li, JIA Hai-Yan, BU Ting, LI Na. Regulation of exogenous hydrogen sulfide on photosynthetic carbon metabolism in Avena nude under saline-alkaline stress [J]. Chin J Plant Ecol, 2023, 47(3): 374-388. |
[3] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[4] | XIONG Shu-Ping, CAO Wen-Bo, CAO Rui, ZHANG Zhi-Yong, FU Xin-Lu, XU Sai-Jun, PAN Hu-Qiang, WANG Xiao-Chun, MA Xin-Ming. Effects of horizontal structure on canopy vertical structure, microenvironment and yield of Triticum aestivum [J]. Chin J Plant Ecol, 2022, 46(2): 188-196. |
[5] | LIN Yong, CHEN Zhi, YANG Meng, CHEN Shi-Ping, GAO Yan-Hong, LIU Ran, HAO Yan-Bin, XIN Xiao-Ping, ZHOU Li, YU Gui-Rui. Temporal and spatial variations of ecosystem photosynthetic parameters in arid and semi-arid areas of China and its influencing factors [J]. Chin J Plant Ecol, 2022, 46(12): 1461-1472. |
[6] | LI Zhou-Yuan, YE Xiao-Zhou, WANG Shao-Peng. Ecosystem stability and its relationship with biodiversity [J]. Chin J Plant Ecol, 2021, 45(10): 1127-1139. |
[7] | LI Song-Song, WANG Ning-Xin, ZHENG Wei, ZHU Ya-Qiong, WANG Xiang, MA Jun, ZHU Jin-Zhong. Comparison of transgressive overyielding effect and plant diversity effects of annual and perennial legume-grass mixtures [J]. Chin J Plant Ecol, 2021, 45(1): 23-37. |
[8] | Qun LI, Cheng-Zhang ZHAO, Lian-Chun ZHAO, Jian-Liang WANG, Wei-Tao ZHANG, Wen-Xiu YAO. Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan [J]. Chin J Plant Ecol, 2017, 41(9): 985-994. |
[9] | Li Yi-Bo, SONG He, ZHOU Li, XU Zhen-Zhu, ZHOU Guang-Sheng. Modeling study on photosynthetic-light response curves of a C4 plant, maize [J]. Chin J Plant Ecol, 2017, 41(12): 1289-1300. |
[10] | Cheng-Yan ZHENG, Ai-Xing DENG, Hojatollah LATIFMANESH, Zhen-Wei SONG, Jun ZHANG, Li WANG, Wei-Jian ZHANG. Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2017, 41(10): 1060-1068. |
[11] | Dan WANG, Yun-Zhou QIAO, Bao-Di DONG, Jing GE, Ping-Guo YANG, Meng-Yu LIU. Differential effects of diurnal asymmetric and symmetric warming on yield and water utilization of soybean [J]. Chin J Plant Ecol, 2016, 40(8): 827-833. |
[12] | ZOU Chang-Ming,WANG Yun-Qing,LIU Ying,ZHANG Xiao-Hong,TANG Shan. Responses of photosynthesis and growth to weak light regime in four legume species [J]. Chin J Plan Ecolo, 2015, 39(9): 909-916. |
[13] | MENG De-Yun,HOU Lin-Lin,YANG Sha,MENG Jing-Jing,GUO Feng,LI Xin-Guo,WAN Shu-Bo. Exogenous polyamines alleviating salt stress on peanuts (Arachis hypogaea) grown in pots [J]. Chin J Plan Ecolo, 2015, 39(12): 1209-1215. |
[14] | ZHANG Jia-Lei,GUO Feng,MENG Jing-Jing,YU Xiao-Xia,YANG Sha,ZHANG Si-Bin,GENG Yun,LI Xin-Guo,WAN Shu-Bo. Effects of calcium fertilizer on yield, quality and related enzyme activities of peanut in acidic soil [J]. Chin J Plan Ecolo, 2015, 39(11): 1101-1109. |
[15] | XIONG Shu-Ping, WANG Jing, WANG Xiao-Chun, DING Shi-Jie, MA Xin-Ming. Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region [J]. Chin J Plant Ecol, 2014, 38(7): 767-775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn