Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (10): 1060-1068.DOI: 10.17521/cjpe.2017.0021
• Research Articles • Previous Articles Next Articles
Cheng-Yan ZHENG1, Ai-Xing DENG1, Hojatollah LATIFMANESH1, Zhen-Wei SONG1, Jun ZHANG1, Li WANG2, Wei-Jian ZHANG1,*()
Online:
2017-10-10
Published:
2017-12-24
Contact:
Wei-Jian ZHANG
Cheng-Yan ZHENG, Ai-Xing DENG, Hojatollah LATIFMANESH, Zhen-Wei SONG, Jun ZHANG, Li WANG, Wei-Jian ZHANG. Warming impacts on the dry matter accumulation, and translocation and nitrogen uptake and utilization of winter wheat on the Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2017, 41(10): 1060-1068.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0021
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 2.59 ± 0.04a | 42.88 ± 0.45b | 0.64 ± 0.02a | 10.53 ± 0.40a | 0.27 ± 0.01a | 4.49 ± 0.08a | 2.54 ± 0.05a | 42.09 ± 0.27a |
增温 Warmed | 2.33 ± 0.05a | 45.28 ± 0.08a | 0.56 ± 0.02a | 10.98 ± 0.36a | 0.21 ± 0.01a | 4.09 ± 0.30a | 2.04 ± 0.04b | 39.65 ± 0.10b |
Table 1 Responses of dry matter partition among different winter wheat organs at maturity to all-day warming (mean ± SE)
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 2.59 ± 0.04a | 42.88 ± 0.45b | 0.64 ± 0.02a | 10.53 ± 0.40a | 0.27 ± 0.01a | 4.49 ± 0.08a | 2.54 ± 0.05a | 42.09 ± 0.27a |
增温 Warmed | 2.33 ± 0.05a | 45.28 ± 0.08a | 0.56 ± 0.02a | 10.98 ± 0.36a | 0.21 ± 0.01a | 4.09 ± 0.30a | 2.04 ± 0.04b | 39.65 ± 0.10b |
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 56.34 ± 0.76a | 73.26 ± 0.63b | 4.62 ± 0.25a | 6.01 ± 0.35a | 2.88 ± 0.11a | 3.75 ± 0.12a | 13.05 ± 0.26a | 16.98 ± 0.40a |
增温 Warmed | 55.18 ± 0.55a | 77.68 ± 0.27a | 4.31 ± 0.18a | 6.07 ± 0.29a | 1.88 ± 0.14a | 2.65 ± 0.19a | 9.66 ± 0.13b | 13.60 ± 0.20b |
Table 2 Responses of plant nitrogen partition among winter wheat organs at maturity to all-day warming (mean ± SE)
处理 Treatment | 籽粒 Grain | 穗轴+颖壳 Spike axis + glume | 叶片 Leaf | 茎秆+叶鞘 Stem + sheath | ||||
---|---|---|---|---|---|---|---|---|
分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | 分配量 Distribution amount (g·stem-1) | 分配比例 Distribution ratio (%) | |
不增温 Non-warmed | 56.34 ± 0.76a | 73.26 ± 0.63b | 4.62 ± 0.25a | 6.01 ± 0.35a | 2.88 ± 0.11a | 3.75 ± 0.12a | 13.05 ± 0.26a | 16.98 ± 0.40a |
增温 Warmed | 55.18 ± 0.55a | 77.68 ± 0.27a | 4.31 ± 0.18a | 6.07 ± 0.29a | 1.88 ± 0.14a | 2.65 ± 0.19a | 9.66 ± 0.13b | 13.60 ± 0.20b |
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官花前贮藏同化物转运量 DMTA (kg·hm-2) | 1 164.95 ± 48.69b | 2 126.69 ± 129.66a |
开花前贮藏同化物转运率 DMTR (%) | 8.51 ± 0.52b | 12.96 ± 0.91a |
开花前贮藏同化物转运量对籽粒 贡献率 CDMTAAG (%) | 13.29 ± 0.93b | 22.40 ± 1.67a |
开花后同化物积累输入籽粒量 DMAAA (kg·hm-2) | 7 635.10 ± 293.44a | 7 390.02 ± 309.59a |
开花后同化量对籽粒贡献率 CDMAAAG (%) | 86.71 ± 0.93a | 77.60 ± 1.67b |
Table 3 Responses of dry matter translocation amount from vegetative organs to grain and dry matter accumulation amount after anthesis to all-day warming (mean ± SE)
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官花前贮藏同化物转运量 DMTA (kg·hm-2) | 1 164.95 ± 48.69b | 2 126.69 ± 129.66a |
开花前贮藏同化物转运率 DMTR (%) | 8.51 ± 0.52b | 12.96 ± 0.91a |
开花前贮藏同化物转运量对籽粒 贡献率 CDMTAAG (%) | 13.29 ± 0.93b | 22.40 ± 1.67a |
开花后同化物积累输入籽粒量 DMAAA (kg·hm-2) | 7 635.10 ± 293.44a | 7 390.02 ± 309.59a |
开花后同化量对籽粒贡献率 CDMAAAG (%) | 86.71 ± 0.93a | 77.60 ± 1.67b |
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官氮转运量 NTA (kg·hm-2) | 149.92 ± 3.37b | 180.79 ± 2.24a |
营养器官氮转运率 TE (%) | 67.34 ± 0.77b | 71.07 ± 0.31a |
开花前转运量对籽粒贡献率 CP (%) | 75.24 ± 0.69a | 70.61 ± 0.26b |
开花后氮积累量 NAA (kg·hm-2) | 49.37 ± 2.08b | 75.24 ± 0.94a |
开花后积累量对籽粒贡献率 CPNAA (%) | 24.76 ± 0.69b | 29.39 ± 0.26a |
Table 4 Responses of plant nitrogen translocation amount from vegetative organs to grain and plant nitrogen accumulation amount after anthesis to all-day warming (mean ± SE)
处理 Treatment | 不增温 Non-warmed | 增温 Warmed |
---|---|---|
营养器官氮转运量 NTA (kg·hm-2) | 149.92 ± 3.37b | 180.79 ± 2.24a |
营养器官氮转运率 TE (%) | 67.34 ± 0.77b | 71.07 ± 0.31a |
开花前转运量对籽粒贡献率 CP (%) | 75.24 ± 0.69a | 70.61 ± 0.26b |
开花后氮积累量 NAA (kg·hm-2) | 49.37 ± 2.08b | 75.24 ± 0.94a |
开花后积累量对籽粒贡献率 CPNAA (%) | 24.76 ± 0.69b | 29.39 ± 0.26a |
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 收获指数 Harvest index (%) | 氮吸收效率 NUE (kg·kg-1) | 氮肥偏生产力 NPFP (kg·kg-1) | 氮收获指数 NHI (%) |
---|---|---|---|---|---|
不增温 Non-warmed | 8 800.04 ± 246.65b | 41.22 ± 0.54a | 1.30 ± 0.02b | 41.91 ± 1.17b | 73.26 ± 0.63b |
增温 Warmed | 9 516.71 ± 220.48a | 39.94 ± 0.67a | 1.57 ± 0.01a | 45.32 ± 1.05a | 77.68 ± 0.27a |
Table 5 Responses of grain yield and nitrogen use efficiency of winter wheat to all-day warming (mean ± SE)
处理 Treatment | 籽粒产量 Grain yield (kg·hm-2) | 收获指数 Harvest index (%) | 氮吸收效率 NUE (kg·kg-1) | 氮肥偏生产力 NPFP (kg·kg-1) | 氮收获指数 NHI (%) |
---|---|---|---|---|---|
不增温 Non-warmed | 8 800.04 ± 246.65b | 41.22 ± 0.54a | 1.30 ± 0.02b | 41.91 ± 1.17b | 73.26 ± 0.63b |
增温 Warmed | 9 516.71 ± 220.48a | 39.94 ± 0.67a | 1.57 ± 0.01a | 45.32 ± 1.05a | 77.68 ± 0.27a |
Fig. 3 Responses of dry matter accumulation rate (A and B) and nitrogen accumulation rate (C and D) during different developmental stage to all-day warming in winter wheat (mean ± SE). DMA, dry matter accumulation; NA, nitrogen accumulation. Different lowercase letters in the figure are significant at 5% level.
[1] |
Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality.Agricultural and Forest Meteorology, 149, 1791-1799.
DOI URL |
[2] |
Badeck FW, Bondeau A, B?ttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004). Responses of spring phenology to climate change.New Phytologist, 162, 295-309.
DOI URL |
[3] |
Chen DD (2012). Effects of Different Day and Night Temperature Enhancement After Anthesis on Quality and Physiological Mechanism of Wheat Under Free Air Controlled Condition. Master degree dissertation, Nanjing Agricultural University, Nanjing.(in Chinese with English abstract)[陈丹丹 (2012). 花后开放式增温对小麦品质的影响及其生理机制. 硕士研究论文, 南京农业大学, 南京.]
DOI URL |
[4] |
Chen J, Tian YL, Zhang X, Zheng CY, Song ZW, Deng AX, Zhang WJ (2014). Nighttime warming will increase winter wheat yield through improving plant development and grain growth in North China.Journal of Plant Growth Regulation, 33, 397-407.
DOI URL |
[5] |
Chen XY, Luo YP (2001). Study on the compensatory effect of rewatering during the flowering stage after previous water stress in winter wheat.Acta Agronomica Sinica, 27, 513-516. (in Chinese with English abstract)[陈晓远, 罗远培 (2001). 开花期复水对受旱冬小麦的补偿效应研究. 作物学报, 27, 513-516.]
DOI URL |
[6] |
Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006). National assessment report of climate change (I). Climate change in China and its future trend.Advances in Climate Change Research, 2(1), 3-8. (in Chinese with English abstract)[丁一汇, 任国玉, 石广玉, 宫鹏, 郑循华, 翟盘茂, 张德二, 赵宗慈, 王绍武, 王会军, 罗勇, 陈德亮, 高学杰, 戴晓苏 (2006). 气候变化国家评估报告(I): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2(1), 3-8.]
DOI URL |
[7] |
Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I (2008). Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability.European Journal of Agronomy, 28, 138-147.
DOI URL |
[8] | Fang SB, Tan KY, Ren SX, Zhang XS, Zhao JF (2012).Field experiments in North China show no decrease in winter wheat yields with night temperature increased by 2.0-2.5 °C.Science China Earth Sciences, 55, 1021-1027. |
[9] |
Gebbing T, Schnyder H, Kühbauch W (1998). Carbon mobilization in shoot parts and roots of wheat during grain filling: Assessment by 13C/12C steady-state labelling, growth analysis and balance sheets of reserves.Plant, Cell & Environment, 21, 301-313.
DOI URL |
[10] | IPCC (Intergovernmental Panel on Climate Change) (2014). Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DH, Plattner G, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press,Cambridge, UK. |
[11] |
Jiang D, Xie ZJ, Cao WX, Dai TB, Jing Q (2004).Effects of post-anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat.Acta Agronomica Sinica, 30, 175-182. (in Chinese with English abstract)[姜东, 谢祝捷, 曹卫星, 戴廷波, 荆奇 (2004). 花后干旱和渍水对冬小麦光合特性和物质运转的影响. 作物学报, 30, 175-182.]
DOI URL |
[12] | Jiang LG, Dai TB, Jiang D, Cao WX, Gan XQ, Wei SQ (2004). Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars.Field Crops Research, 88, 239-250. |
[13] |
Liao JX, Wang GX (2000). The effects of increasing CO2, temperature and drought on the chemical composition of wheat leaves.Acta Phytoecologica Sinica, 24, 744-747. (in Chinese with English abstract)[廖建雄, 王根轩 (2000). CO2和温度升高及干旱对小麦叶片化学成分的影响. 植物生态学报, 24, 744-747.]
DOI URL |
[14] |
Lobell DB, Schlenker W, Costa-Roberts J (2011). Climate trends and global crop production since 1980.Science, 333, 616-620.
DOI URL PMID |
[15] |
Mu HR, Jiang D, Dai TB, Jing Q, Cao WX (2008). Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves. Scientia Agricultura Sinica, 41, 599-606. ( in Chinese with English abstract)[牟会荣, 姜东, 戴廷波, 荆奇, 曹卫星 (2008). 遮荫对小麦旗叶光合及叶绿素荧光特性的影响. 中国农业科学, 41, 599-606.]
DOI URL |
[16] |
Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I (1996). Free air temperature increase (FATI): A new tool to study global warming effects on plants in the field.Plant, Cell & Environment, 19, 495-502.
DOI URL |
[17] | Ntanos DA, Koutroubas SD (2002). Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Research, 74, 93-101. |
[18] |
Pepin NR, Bradley S, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Sch?ner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015). Elevation-dependent warming in mountain regions of the world.Nature Climate Change, 5, 424-430.
DOI URL |
[19] |
Sadras VO, Monzon JP (2006). Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina.Field Crops Research, 99, 136-146.
DOI URL |
[20] |
Shen KY, Xu MF (2012). On the rapid development of Tibet’s characteristic agriculture under climate change.Journal of Tibet University, 27(2), 32-39. (in Chinese with English abstract)[沈开艳, 徐美芳 (2012). 气候变化条件下的西藏特色农业跨越式发展研究. 西藏大学学报, 27(2), 32-39.]
DOI URL |
[21] |
Shi JJ, Jiang XD, Shi HB, Chen YJ, Yuan JK, Jiang M (2015). Effects of winter warming treatments on photosynthesis and yield of wheat.Journal of Triticeae Crops, 35, 352-356. (in Chinese with English abstract)[石姣姣, 江晓东, 史宏斌, 陈元珺, 袁久坤, 姜鸣 (2015). 冬季增温对田间小麦光合作用及产量的影响. 麦类作物学报, 35, 352-356.]
DOI URL |
[22] |
Sommer R, Glazirina M, Yuldashev T, Otarov A, Ibraeva M, Martynova L, Bekenov M, Kholov B, Ibragimov N, Kobilov R, Karaev S, Sultonov M, Khasanova F, Esanbekov M, Mavlyanov D, Isaev S, Abdurahimov S, Ikramov R, Shezdyukova L, de Pauw E (2013). Impact of climate change on wheat productivity in Central Asia.Agriculture Ecosystems Environment, 178, 78-99.
DOI URL |
[23] | Stevens WB, Hoeft RG, Mulvaney RL (2005). Fate of nitrogen-15 in a long-term nitrogen rate study II. Nitrogen uptake efficiency.Agronomy Journal, 97, 1046-1053. |
[24] |
Tahir ISA, Nakata N (2005). Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling.Journal of Agronomy and Crop Science, 191, 106-115.
DOI URL |
[25] | Tian YL, Chen J, Chen CQ, Deng AX, Song ZW, Zheng CY, Hoogmoed W, Zhang WJ (2012). Warming impacts on winter wheat phenophase and grain yield under ?eld conditions in Yangtze Delta Plain, China.Field Crops Research, 134, 193-199. |
[26] |
Tian YL, Zheng CY, Chen J, Chen CQ, Deng AX, Song ZW, Zhang BM, Zhang WJ (2014). Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in East China.PLOS ONE, 9, e95108. doi: 10.1371/journal.pone.0095108.
DOI URL PMID |
[27] | Wang YF, Yu ZW, Li SX, Yu SL (2003). Effects of soil fertility and nitrogen application rate on nitrogen absorption and translocation, grain yield, and grain protein content of wheat.Chinese Journal of Applied Ecology, 14, 1868-1872. (in Chinese with English abstract)[王月福, 于振文, 李尚霞, 余松烈 (2003). 土壤肥力和施氮量对小麦氮吸收运转及籽粒产量和蛋白质含量的影响. 应用生态学报, 14, 1868-1872.] |
[28] | Xiao GJ, Zhang Q, Zhang FJ, Luo CK, Wang RY (2011). The impact of rising temperature on spring wheat production in the Yellow River irrigation region of Ningxia.Acta Ecologica Sinica, 31, 6588-6593. (in Chinese with English abstract)[肖国举, 张强, 张峰举, 罗成科, 王润元 (2011). 增温对宁夏引黄灌区春小麦生产的影响. 生态学报, 31, 6588-6593.] |
[29] |
Xu FX, Xiong H, Xie R, Zhang L, Zhu YC, Guo XY, Yang DJ, Zhou XB, Liu M (2009). Advance of rice fertilizer- nitrogen use efficiency.Plant Nutrition and Fertilizer Science, 15, 1215-1225. (in Chinese with English abstract)[徐富贤, 熊洪, 谢戎, 张林, 朱永川, 郭晓艺, 杨大金, 周兴兵, 刘茂 (2009). 水稻氮利用效率的研究进展及其动向. 植物营养与肥料学报, 15, 1215-1225.]
DOI URL |
[30] | Yang JC, Zhang JH, Huang ZL, Zhu Q, Wang L (2000). Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat.Crop Science, 40, 1645-1655. |
[31] |
You LZ, Rosegrant MW, Wood S, Sun DS (2009). Impact of growing season temperature on wheat productivity in China.Agricultural and Forest Meteorology, 149, 1009-1014.
DOI URL |
[32] |
Zhang K, Wang RY, Feng Q, Wang HL, Zhao H, Zhao FN, Yang FL, Lei J (2015). Effects of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area.Transactions of the CSAE, 31(Supp.1), 161-170. (in Chinese with English abstract)[张凯, 王润元, 冯起, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 雷俊 (2015). 模拟增温和降水变化对半干旱区春小麦生长及产量的影响. 农业工程学报, 31(增刊1), 161-170.]
DOI URL |
[33] | Zhang K, Wang RY, Wang HL, Zhao H, Qi Y, Zhao FN, Lei J (2016). Effects of simulated warming on dry matter production and distribution of rainfed spring wheat in semi-arid area.Transactions of the CSAE, 32, 223-232. (in Chinese with English abstract)[张凯, 王润元, 王鹤龄, 赵鸿, 齐月, 赵福年, 雷俊 (2016). 模拟增温对半干旱雨养区春小麦物质生产与分配的影响. 农业工程学报, 32, 223-232.] |
[34] | Zheng CY, Chen CQ, Zhang X, Song ZW, Deng AX, Zhang BM, Wang L, Mao NW, Zhang WJ (2016). Actual impacts of global warming on winter wheat yield in Eastern Himalayas.International Journal of Plant Production, 10, 159-174. |
[1] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[2] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[3] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[4] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[5] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[6] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[7] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[8] | GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles [J]. Chin J Plant Ecol, 2021, 45(9): 1006-1023. |
[9] | NI Ming, ZHANG Xi-Yue, JIANG Chao, WANG He-Song. Responses of vegetation to extreme climate events in southwestern China [J]. Chin J Plant Ecol, 2021, 45(6): 626-640. |
[10] | JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019 [J]. Chin J Plant Ecol, 2021, 45(6): 617-625. |
[11] | FANG Ou-Ya, ZHANG Yong, ZHANG Qi, JIA Heng-Feng. Growth responses of Tamarix austromongolica to extreme drought and flood in the upper Yellow River basin [J]. Chin J Plant Ecol, 2021, 45(6): 641-649. |
[12] | ZHOU Wen, CHI Yong-Gang, ZHOU Lei. Vegetation phenology in the Northern Hemisphere based on the solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(4): 345-354. |
[13] | Edith BAI, XUE Bing. A review of influences of land use and land cover change on ecosystems [J]. Chin J Plant Ecol, 2020, 44(5): 543-552. |
[14] | NIU Shu-Li, CHEN Wei-Nan. Global change and ecosystems research progress and prospect [J]. Chin J Plant Ecol, 2020, 44(5): 449-460. |
[15] | ZHANG Wen-Qiang, LUO Ge-Ping, ZHENG Hong-Wei, WANG Hao, HAMDI Rafiq, HE Hui-Li, CAI Peng, CHEN Chun-Bo. Analysis of vegetation index changes and driving forces in inland arid areas based on random forest model: a case study of the middle part of northern slope of the north Tianshan Mountains [J]. Chin J Plant Ecol, 2020, 44(11): 1113-1126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn