Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (10): 1064-1076.doi: 10.17521/cjpe.2015.0412

• Reviews • Previous Articles     Next Articles

Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China

Xiang GU1, Shi-Ji ZHANG2, Wen-Hua XIANG1,3,4, Lei-Da LI1, Zhao-Dan LIU1, Wei-Jun SUN1, Xi FANG1,3,4,*()   

  1. 1School of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China

    2School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

    3National Engineering Laboratory of South China Forestry Ecology Applicable Technologies, Changsha 410004, China
    and
    4Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, Hunan 438107, China
  • Online:2016-11-02 Published:2016-10-10
  • Contact: Xi FANG E-mail:fangxizhang@sina.com

Abstract:

Aims The objective of this paper was to quantify the seasonal variation of active soil organic carbon in the subtropical forests for better understanding of the underline mechanisms in controlling soil organic carbon storage and dynamics in natural and restored forests in the region. Methods The study was conducted in a one-hectare permanent plot at Dashanchong Forest Park in Changsha County, Hunan Province, China. Four types of subtropical forests were selected as our study sites: (1) Cunninghamia lanceolata plantation, (2) Pinus massoniana-Lithocarpus glaber mixed forest, (3) Choerospondias axillaries deciduous broad-leaved forest, and (4) L. glaber-Cyclobalanopsis glauca evergreen broad-leaved forest. The soil samples were taken from 0-15 cm and 15-30 cm depths within each of the forests from December 2011 to September 2012. Soil microbial biomass carbon (MBC), mineralized organic carbon (MOC), readily oxidized carbon (ROC), and dissolved organic carbon (DOC) were analyzed for their seasonal changes. Important findings There existed a considerable seasonal variations of soil MBC, MOC, ROC, DOC among the forests, with a similar patterns of active organic carbon fraction. Soil MBC, MOC and ROC were significantly higher in the summer and the autumn than those in the spring and winter, while soil DOC was higher in the spring, summer and winter than that in the autumn. The seasonal variations of different active organic carbon fractions appeared different within the same forest type. Significantly-positive correlations were found between soil MBC, MOC, ROC, DOC and soil moisture content, soil organic carbon (SOC), total N, hydrolysis N, total P (except for MBC, MOC and ROC in Cunninghamia lanceolata plantation), available P, but not between soil MBC, MOC, ROC, DOC concentrations and soil pH, total K and available K. The results indicated that the differences of exogenous carbon devotion, physicochemical properties were responsible for the significant differences of soil active organic carbon, and the growth rhythm of tree species, soil moisture content, the availability of nutrient (SOC, N and P), and the sources of soil active organic carbon fractions made a major contribution to seasonal variations of soil active organic carbon. Soil MBC, MOC, ROC, and DOC could be used as sensitivity indexes to assess the dynamics of soil C, N and P.

Key words: hilly area of Hunan Province, secondary forests, Cunninghamia lanceolata plantation, soil active organic carbon, seasonal variations

Table 1

Basic soil properties of different forest stands (average of the 4 seasons ± SD)"

森林类型Forest types 土层
Soil layer
(cm)
含水量
Moisture content
(%)
pH 有机碳
Soil organic carbon (g·kg-1)
全N
Total N
(g·kg-1)
水解N
Hydrolysis N
(mg·kg-1)
全P
Total P
(g·kg-1)
速效P
Available P
(mg·kg-1)
全K
Total K (g·kg-1)
速效K
Available K
(mg·kg-1)
CL 0-15 26.62 ± 5.63 4.57 ± 0.20 19.72 ± 3.61 1.12 ± 0.23 58.21 ± 10.16 0.21 ± 0.05 1.96 ± 0.49 4.98 ± 1.41 52.55 ± 10.67
15-30 26.16 ± 3.37 4.65 ± 0.34 15.00 ± 3.22 0.96 ± 0.22 44.46 ± 6.20 0.20 ± 0.04 1.35 ± 0.37 5.08 ± 1.53 42.13 ± 7.63
PM 0-15 20.27 ± 4.35 4.55 ± 0.20 23.57 ± 6.82 1.37 ± 0.29 54.39 ± 14.03 0.25 ± 0.06 2.43 ± 0.55 5.82 ± 1.23 53.01 ± 10.65
15-30 18.33 ± 3.18 4.62 ± 0.18 17.76 ± 4.19 1.02 ± 0.22 37.95 ± 8.60 0.22 ± 0.05 1.99 ± 0.48 5.45 ± 1.55 49.55 ± 11.93
CA 0-15 25.53 ± 7.67 4.67 ± 0.19 24.08 ± 6.99 1.65 ± 0.44 77.93 ± 24.03 0.29 ± 0.07 2.73 ± 0.88 5.74 ± 1.55 69.30 ± 17.94
15-30 22.26 ± 5.76 4.69 ± 0.24 18.40 ± 4.62 1.33 ± 0.44 64.36 ± 19.18 0.27 ± 0.06 2.15 ± 0.74 5.76 ± 1.59 57.75 ± 16.84
LG 0-15 22.53 ± 2.33 4.63 ± 0.24 25.79 ± 6.30 1.44 ± 0.36 66.44 ± 15.53 0.20 ± 0.04 2.35 ± 0.43 4.91 ± 1.64 56.75 ± 12.83
15-30 21.61 ± 2.26 4.64 ± 0.20 18.48 ± 4.08 1.12 ± 0.37 50.28 ± 15.09 0.19 ± 0.04 2.03 ± 0.57 4.66 ± 1.36 45.56 ± 10.61

Table 2

Repeated-Measures ANOVA on the change of soil microbial biomass carbon, mineralized organic carbon, readily oxidized carbon and dissolved organic carbon"

因子
Factor
微生物生物量碳
Microbial biomass carbon
可矿化有机碳
Mineralized organic carbon
易氧化有机碳
Readily oxidized carbon
水溶性有机碳
Dissolved organic carbon
df F p df F p df F Sig df F p
A 3 7.37 0.003 3 43.06 0.000 3 41.24 0.000 3 7.24 0.003
B 3 32.21 0.000 3 21.81 0.000 3 28.25 0.000 3 63.22 0.000
C 1 18.05 0.001 1 74.13 0.000 1 95.48 0.000 1 33.30 0.000
A × B 9 5.97 0.000 9 1.42 0.206 9 3.63 0.002 9 1.40 0.215
A × C 3 0.13 0.941 3 1.89 0.173 3 2.34 0.112 3 0.78 0.524
B × C 3 0.423 0.736 3 1.91 0.141 3 1.20 0.320 3 3.74 0.017
A × B × C 9 0.77 0.645 9 0.12 0.999 9 0.27 0.979 9 0.28 0.977

Fig. 1

Seasonal variations of soil microbial biomass carbon concentrations in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among seasons of the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad leaved-forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest."

Fig. 2

Seasonal variations of soil mineralized organic carbon in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among seasons in the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad leaved-forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest."

Fig. 3

Seasonal variations of soil readily oxidized carbon concentrations in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among different seasons in the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad-leaved forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest."

Fig. 4

Seasonal variations of soil dissolved organic carbon concentrations in different forests (mean ± SE). Capital letters indicate significant differences among the forests in the same season (p < 0.05), while lowercase letters indicate significant differences among different seasons in the same forest (p < 0.05); CA, Choerospondias axillaris deciduous broad-leaved forest; CL, Cunninghamia lanceolata plantation; LG, Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest; PM, Pinus massoniana-Lithocarpus glaber mixed forest."

Table 3

Correlation coefficients between soil organic carbon fractions and soil moisture content in four subtropical forests"

森林类型
Forest type
土壤有机碳
Soil organic carbon
微生物生物量碳
Microbial biomass
carbon
可矿化有机碳
Mineralized organic
carbon
易氧化有机碳
Readily oxidized
carbon
水溶性有机碳
Dissolved
organic carbon
CL (n = 24) 0.510 3* 0.772 3** 0.559 1** 0.408 9* 0.436 6*
PM (n = 24) 0.596 9** 0.806 7** 0.532 6** 0.796 0** 0.414 4*
CA (n = 24) 0.530 7** 0.422 3* 0.506 2* 0.638 5** 0.501 0*
LG (n = 24) 0.516 2* 0.776 5 ** 0.545 0** 0.529 6** 0.409 8*
研究区 Research area (n = 96) 0.344 5** 0.497 2** 0.246 5** 0.319 2** 0.267 1**

Table 4

Correlation coefficients between soil active organic carbon fractions and soil organic carbon, nutrients, pH value in four tropical forests"

森林类型
Forest type
项目
Item
土壤有机碳
Soil organic carbon
全N
Total N
全P
Total P
全K
Total K
水解N
Hydrolysis N
速效P
Available P
速效K
Available K
pH
CL (n = 24) 微生物生物量
Microbial biomass carbon
0.631 7** 0.481 0 * 0.205 4 -0.156 3 0.533 4 ** 0.473 8 * -0.108 3 -0.064 6
可矿化有机碳
Mineralized organic carbon
0.459 3* 0.403 8 * -0.050 8 0.244 4 0.539 6 ** 0.418 1 * 0.540 3 ** -0.279 8
易氧化有机碳
Readily oxidized carbon
0.712 1** 0.455 1 * -0.021 1 0.037 1 0.600 8 ** 0.559 9 ** 0.076 8 -0.380 6
水溶性有机碳
Dissolved organic carbon
0.947 3** 0.708 1 ** 0.455 6 * -0.066 9 0.645 8 ** 0.598 4 ** 0.056 8 0.060 9
PM (n = 24) 微生物生物量碳
Microbial biomass carbon
0.568 3** 0.570 3** 0.473 6* -0.071 8 0.420 6* 0.488 8* 0.051 4 -0.391 4
可矿化有机碳
Mineralized organic carbon
0.536 0** 0.579 1** 0.583 3** -0.332 0 0.657 9** 0.491 0* 0.050 6 0.251 8
易氧化有机碳
Readily oxidized carbon
0.709 3** 0.638 2** 0.523 3** -0.064 5 0.554 8** 0.545 6* 0.013 1 -0.270 1
水溶性有机碳
Dissolved organic carbon
0.972 7** 0.656 1** 0.702 1** -0.100 6 0.652 1** 0.479 9* -0.158 1 -0.005 8
CA (n = 24) 微生物生物量碳
Microbial biomass carbon
0.533 9** 0.511 3* 0.678 1** -0.318 4 0.451 7* 0.459 5* 0.138 6 0.147 8
可矿化有机碳
Mineralized organic carbon
0.639 0** 0.559 3** 0.421 7* 0.078 3 0.613 7** 0.507 6* -0.288 2 -0.265 9
易氧化有机碳
Readily oxidized carbon
0.743 4** 0.722 3** 0.514 9* -0.094 1 0.470 3* 0.659 4** 0.038 7 0.002 8
水溶性有机碳
Dissolved organic carbon
0.987 8** 0.703 3** 0.507 9* 0.267 8 0.584 6** 0.545 5** 0.109 7 -0.303 9
LG (n = 24) 微生物生物量碳
Microbial biomass carbon
0.724 7** 0.827 7** 0.487 8* -0.200 1 0.510 3* 0.585 8** -0.273 3 -0.127 1
可矿化有机碳
Mineralized organic carbon
0.637 1** 0.603 9** 0.439 3* 0.115 4 0.516 3** 0.471 7* 0.267 8 -0.265 4
易氧化有机碳
Readily oxidized carbon
0.715 6** 0.562 8** 0.458 5* -0.088 1 0.559 3** 0.412 1* 0.126 4 -0.052 6
水溶性有机碳
Dissolved organic carbon
0.601 2** 0.584 7** 0.409 6* -0.168 6 0.659 4** 0.728 6** -0.009 5 -0.237 4
研究区
Research area
(n = 96)
微生物生物量碳
Microbial biomass carbon
0.616 5** 0.634 4** 0.451 2** -0.124 7 0.519 2** 0.524 5** 0.071 6 -0.059 3
可矿化有机碳
Mineralized organic carbon
0.619 9** 0.537 2** 0.262 1** 0.002 2 0.507 3** 0.481 1** 0.093 8 -0.128 0
易氧化有机碳
Readily oxidized carbon
0.730 7** 0.671 3** 0.409 8** -0.003 5 0.532 5** 0.633 1** 0.183 2 -0.086 2
水溶性有机碳
Dissolved organic carbon
0.808 9** 0.634 4** 0.326 0** -0.022 3 0.557 4** 0.586 4** 0.079 0 -0.087 1
[1] Barbhuiya AR, Arunachalam A, Pandey HN, Arunachalam K, Khan ML, Nath PC (2004). Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest.European Journal of Soil Biology, 40, 113-121.
[2] Bengtson P, Bengtsson G (2007). Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures.Ecology Letters, 10, 783-790.
[3] Devi NB, Yadava PS (2006). Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India.Applied Soil Ecology, 31, 220-227.
[4] Dosskey MG, Bertsch PM (1997). Transport of dissolved organic matter through a sandy forest soil.Soil Science Society of America Journal, 61, 920-927.
[5] Edwards KA, McCulloch J, Kershaw GP (2006). Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology &Biochemistry, 38, 2843-2851.
[6] Fan YX, Yang YS, Yang ZJ, Xie JS, Chen GS, Zhong XJ, Guo JF (2013). Seasonal dynamics and content of soil labile organic carbon of mid-subtropical evergreen broadleaved forest during natural succession.Acta Ecologica Sinica, 33, 5751-5759.(in Chinese with English abstract)[范跃新, 杨玉盛, 杨智杰, 谢锦升, 陈光水, 钟小剑, 郭剑芬 (2013). 中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态. 生态学报,33, 5751-5759.]
[7] Fang C, Smith P, Moncrieff JB, Smith JU (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59.
[8] Geng YQ, Yu XX, Yue YJ, Li JH, Zhang GZ, Liu S (2009). Soil active organic carbon pool of coniferous and broadleaved forests in the mountainous area of Beijing.Journal of Beijing Forestry University, 31(5), 192-224.(in Chinese with English abstract)[耿玉清, 余新晓, 岳永杰, 李金海, 张国桢, 刘松 (2009). 北京山地针叶林与阔叶林土壤活性有机碳库的研究. 北京林业大学学报, 31(5), 192-224.]
[9] Gu X, Fang X, Xiang WH, Li SL, Sun WJ (2013). Soil organic carbon and mineralizable organic carbon in four subtropical forests in hilly region of central Hunan Province, China. Chinese Journal of Ecology, 32, 2687-2694.(in Chinese with English abstract)[辜翔, 方晰, 项文化, 李胜蓝, 孙伟军 (2013). 湘中丘陵区4种森林类型土壤有机碳和可矿化有机碳的比较. 生态学杂志,32, 2687-2689.]
[10] Guo J, Yu LH, Fang X, Xiang WH, Deng XW, Lu X (2015). Litter production and turnover in four types of subtropical forests in China.Acta Ecologica Sinica, 35, 4668-4677.(in Chinese with English abstract)[郭婧, 喻林华, 方晰, 项文化, 邓湘雯, 路翔 (2015). 中亚热带4种森林凋落物量、组成、动态及其周转期. 生态学报,35, 4668-4677.]
[11] Haynes RJ (2005). Labile organic matter fractions as central components of the quality of agricultural soils: An overview.Advances in Agronomy, 85, 221-268.
[12] Huang LY, Cao JH, Zhou L, Xu XJ, Mo B, Zhang P (2007). Seasonal change and the influence factors of soil dissolved organic carbon at different geological background.Ecology and Environment, 16, 1282-1288.(in Chinese with English abstract)[黄黎英, 曹建华, 周莉, 徐祥明, 莫彬, 张佩 (2007). 不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子. 生态环境,16, 1282-1288.]
[13] Institute of Soil Science, Chinese Academy of Sciences (1978). Physical and chemical analysis on soil. Shanghai Scientific and Technical Publishers, Shanghai.(in Chinese)[中国科学院南京土壤研究所 (1978). 土壤理化分析. 上海科学技术出版社, 上海.]
[14] Iqbal J, Hu RG, Feng ML, Shan L, Malghan S, Ali IM (2010). Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China.Agriculture, Ecosystems and Environment, 137, 294-307.
[15] Jiang PK (2005). Soil active carbon pool under different types of vegetation.Scientia Silvae Sinicae, 41(1), 10-14.(in Chinese with English abstract)[姜培坤 (2005). 不同林分下土壤活性有机碳库研究. 林业科学,41(1), 10-13.]
[16] Kawahigashi M, Hiroaki S, Kazuhiko Y (2003). Seasonal changes in organic compounds in soil solutions obtained from volcanic ash soils under different land uses. Geoderma, 113, 381-396.
[17] Liu C, Liu YK, Jin GZ (2014). Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing’an Mountains, China.Acta Ecologica Sinica, 34, 451-459.(in Chinese with English abstract)[刘纯, 刘延坤, 金光泽 (2014). 小兴安岭6种森林类型土壤微生物量的季节变化特征. 生态学报,34, 451-459.]
[18] Liu C, Xiang WH, Lei PF, Deng XW, Tian DL, Fang X, Peng CH (2014). Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient.Plant and Soil, 376, 445-459.
[19] Liu C, Xiang WH, Tian DL, Fang X, Peng CH (2011). Overyielding of fine root biomass as increasing plant species richness in subtropical forests in central southern China.Chinese Journal of Plant Ecology, 35, 539-550.(in Chinese with English abstract)[刘聪, 项文化, 田大伦, 方晰, 彭长辉 (2011). 中亚热带森林植物多样性增加导致细根生物量“超产”. 植物生态学报,35, 539-550.]
[20] Liu M, Yu WT, Jiang ZS, Ma Q (2006). A research review on soil active organic carbon.Chinese Journal of Ecology, 25, 1412-1417.(in Chinese with English abstract)[柳敏, 宇万太, 姜子绍, 马强 (2006). 土壤活性有机碳. 生态学杂志,25, 1412-1417.]
[21] Liu RJ, Liu ZC, Wang B, Wu YC, Cheng CF, Ma SJ, Geri LT (2013). Seasonal dynamics of soil water-soluble organic carbon in secondary forests and Chinese fir plantations in hilly region of northwest Zhejiang Province, East China.Chinese Journal of Ecology, 32, 1385-1390.(in Chinese with English abstract)[刘荣杰, 李正才, 王斌, 吴亚丛, 程彩芳, 马少杰, 格日乐图 (2013). 浙西北丘陵地区次生林与杉木林土壤水溶性有机碳季节动态. 生态学杂志,32, 1385-1390.]
[22] Liu RJ, Wu YC, Zhang Y, Li ZC, Ma SJ, Wang B, Geri LT (2012). Comparison of soil labile organic carbon in Chinese fir plantations and natural secondary forests in north subtropical areas of China.Chinese Journal of Plant Ecology, 36, 431-437.(in Chinese with English abstract)[刘荣杰, 吴亚丛, 张英, 李正才, 马少杰, 王斌, 格日乐图 (2012). 中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较. 植物生态学报,36, 431-437.]
[23] Lu X, Xiang WH, Ren H, Peng CH (2012). Litter biomass and its carbon and nitrogen storage in four subtropical forests in central Southern China.Chinese Journal of Ecology, 31, 2234-2240.(in Chinese with English abstract)[路翔, 项文化, 任辉, 彭长辉(2012). 中亚热带四种森林凋落物及碳氮贮量比较. 生态学杂志,31, 2234-2240.]
[24] Luan JW, Xiang CH, Liu SR, Luo ZS, Gong YB, Zhu XL (2010). Assessments of the impacts of Chinese fir plantation and natural regenerated forest on soil organic matter quality at Longmen mountain, Sichuan, China.Geoderma, 156, 228-236.
[25] Quideau SA, Chadwick OA, Trumbore SE, Johnson-Maynard JL, Graham RC, Anderson MA (2001). Vegetation control on soil organic matter dynamics.Organic Geochemistry, 32, 247-252.
[26] Ruan HH, Zou XM, Scatena FN, Zimmerman JK (2004). Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest.Plant and Soil, 260, 147-154.
[27] Santos VB, Araújo ASF, Leite LFC, Nunes LAPL, Melo WJ (2012). Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems.Geoderma, 170, 227-231.
[28] Shen H, Cao ZH, Hu ZY (1999). Characteristics and ecological effects of the active organic carbon in soil.Chinese Journal of Ecology, 18(3), 32-38.(in Chinese with English abstract)[沈宏, 曹志洪, 胡正义(1999). 土壤活性有机碳的表征及其生态效应. 生态学杂志,18(3), 32-38.]
[29] Shrestha RK, Ladha JK, Gami SK (2006). Total and organic soil carbon incropping systems of Nepal.Nutrient Cycling in Agrocosystems, 75, 257-269.
[30] Singh JS, Singh DP, Kashyap AK (2010). Microbial biomass C, N and P in disturbed dry tropical forest soils, India.Pedosphere, 20, 780-788.
[31] Sun WJ, Fang X, Xiang WH, Zhang SJ, Li SL (2013). Active pools of soil organic carbon in subtropical forests at dif- ferent successional stages in Central Hunan, China.Acta Ecologica Sinica, 33, 7765-7773.(in Chinese with English abstract)[孙伟军, 方晰, 项文化, 张仕吉, 李胜蓝 (2013). 湘中丘陵区不同演替阶段森林活性有机碳库的特征. 生态学报,33, 7765-7773.]
[32] Taggart M, Heitman JL, Wei S, Vepraskas M (2012). Tem- perature and water content effects on carbon minerali- zation for sapric soil material.Wetlands, 32, 939-944.
[33] Tan GX, Liu YQ, Li LL, Liu W, Zan YT, Li XD, Huo BN, He MJ (2014). Content and seasonal change of soil labile or- ganic carbon under four different plantations in degraded red soil region.Acta Agriculturae Universitatis Jiangxien- sis, 36, 434-440.(in Chinese with English abstract)[谭桂霞, 刘苑秋, 李莲莲, 刘武, 昝玉亭, 李晓东, 霍炳南, 何木姣 (2014). 退化红壤区不同类型人工林土壤活性有机碳及其季节变化. 江西农业大学学报,36, 434-440.]
[34] Taylor AR, Wang JR, Chen HYH (2007). Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada.Canadian Journal of Forest Research, 37, 2260-2269.
[35] Tipping E, Woof C, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Poskitt J, Rowland AP, Bol R, Harkness DD (1999). Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment.Environment International, 25, 83-95.
[36] Wang D, Lü YL, Xu L, Zhang HX, Wang RM, He NP (2013). The effect of moisture and temperature on soil C mineralization in wetland and steppe of the Zoige region, China.Acta Ecologica Sinica, 33, 6436-6443.(in Chinese with English abstract)[王丹, 吕瑜良, 徐丽, 张洪轩, 王若梦, 何念鹏 (2013). 水分和温度对若尔盖湿地和草甸土壤碳矿化的影响. 生态学报,33, 6436-6443.]
[37] Wang GB, Ruan HH, Tang FY, He Y (2009). A review on the dynamics of soil microbial biomass in forest ecosystems.Journal of Anhui Agricultural University, 15, 390-398(in Chinese with English abstract).[王国兵, 阮宏华, 唐燕飞, 何容 (2009). 森林土壤微生物生物量动态变化研究进展. 安徽农业大学学报,15, 390-398.]
[38] Wang GB, Zhao XL, Wang MH, Ruan HH, Xu CM, Xu YM (2013). Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province, East China. Chinese Journal of Applied Ecology, 24, 921-926.(in Chinese with English abstract)[王国兵, 赵小龙, 王明慧, 阮宏华, 徐长柏, 徐亚明 (2013). 苏北沿海土地利用变化对土壤易氧化有机碳含量的影响. 应用生态学报,24, 921-926.]
[39] Wang QK, Wang SL (2011). Response of labile soil organic matter to changes in forest vegetation in subtropical regions.Applied Soil Ecology, 47, 210-216.
[40] Wang QK, Wang SL, Feng ZW, Huang Y (2005). Active soil organic matter and its relationship with soil quality.Acta Ecologica Sinica, 25, 513-519.(in Chinese with English abstract)[王清奎, 汪思龙, 冯宗炜, 黄宇 (2005). 土壤活性有机质及其与土壤质量的关系. 生态学报,25, 513-519.]
[41] Wang W, Yang YS, Chen GS, Guo JF, Qian W (2008). Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China.Chinese Journal of Ecology, 27, 924-928.(in Chinese with English abstract)[汪伟, 杨玉盛, 陈光水, 郭剑芬, 钱伟 (2008). 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化. 生态学杂志,27, 924-928.]
[42] Wu Y, Jiang CS, Hao QJ (2012). Dynamics of soil active carbon pool in a purple paddy soil in Southwest China.Environment Science, 33, 2804-2809.(in Chinese with English abstract)[吴艳, 江长胜, 郝庆菊 (2012). 西南地区紫色水稻土活性碳库的季节动态. 环境科学,33, 2804-2809.]
[43] Xie T, Zheng AB, Wang GB, Ruan HH, Xu CM, Xu YM, Ge ZW (2012). Seasonal variation patterns of soil labile organic carbon in poplar plantations with different ages in northern Jiangsu.Chinese Journal of Ecology, 31, 1171-1178.(in Chinese with English abstract) [谢涛, 郑阿宝, 王国兵, 阮宏华, 徐亚明, 徐长柏, 葛之葳 (2012). 苏北不同林龄杨树林土壤活性碳的季节变化. 生态学杂志, 31, 1171-1178.]
[44] Xu X, Wang F, Luan YL,Wang JS, Fang YH, Ruan HH (2008). Soil readily oxidizable carbon along an elevation gradient of Wuyi Mountains in southeastern China.Chinese Journal of Ecology, 27, 1115-1121.(in Chinese with English abstract) [徐侠, 王丰, 栾以玲, 汪家社, 方燕鸿, 阮宏华 (2008). 武夷山不同海拔植被土壤易氧化碳. 生态学杂志,27, 1115-1121.]
[45] Yang H, Cao JH, Zhang LK, Huo YL, Mao LF (2011). Pool sizes and turnover of soil organic carbon of farmland soil in Karst area of Guilin. Journal of Northeast Agricultural University (English Edition), 18, 39-45.
[46] Yang YS, Xie JS, Sheng H, Chen GS, Li X (2007). The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of southern China.Acta Geographica Sinica, 62, 1123-1131.(in Chi- nese with English abstract)[杨玉盛, 谢锦升, 盛浩, 陈光水, 李旭 (2007). 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响. 地理学报,62, 1123-1131.]
[47] Zhang SJ, Xiang WH, Sun WJ, Fang X (2014). Soil dissolved organic carbon concentration under different land-use pat- terns in a hilly area of central Hunan Province, China.Chinese Journal of Ecology, 33, 2065-2071.(in Chinese with English abstract)[张仕吉, 项文化, 孙伟军, 方晰 (2014). 湘中丘陵区不同土地利用方式土壤水溶性有机碳含量. 生态学杂志,33, 2065-2071.]
[48] Zhou GM, Xu JM, Jiang PK (2006). Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations.Pedosphere, 16, 525-531.
[49] Zhou Y, Xu XG, Wang F, Ruan HH, Wang JS, Fang YH, Wu YY, Xu ZK (2009). Soil microbial biomass, respiration, and metabolic quotient along an altitudinal gradient in Wuyi Mountain of southeastern China. Chinese Journal of Ecology, 28, 265-269.(in Chinese with English abstract)[周焱, 徐宪根, 王丰, 阮宏华, 汪家社, 方燕鸿, 吴焰玉, 徐自坤 (2009). 武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(qMB, Qco2). 生态学杂志,16, 265-269.]
[1] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[2] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[3] GU Xiang,ZHANG Shi-Ji,LIU Zhao-Dan,LI Lei-Da,CHEN Jin-Lei,WANG Liu-Fang,FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plan Ecolo, 2018, 42(5): 595-608.
[4] WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175.
[5] MA Shao-Jie, LI Zheng-Cai, WANG Gang, LIU Rong-Jie, FU Mao-Yi, ZHOU Ben-Zhi. Effects of intensive and extensive management on soil active organic carbon in bamboo forests of China [J]. Chin J Plan Ecolo, 2011, 35(5): 551-557.
[6] WU Tong-Gui, WU Ming, LIU Li, XIAO Jiang-Hua. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China [J]. Chin J Plan Ecolo, 2010, 34(1): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .