Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (6): 683-692.doi: 10.17521/cjpe.2016.0136

• Research Articles • Previous Articles     Next Articles

Metabolic responses of wheat roots to alkaline stress

Rui GUO1,2,*(), Ji ZHOU3, Fan YANG4, Feng LI1   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

    2Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China

    3Land Consolidation and Rehabilitation Centre, the Ministry of Land and Resources, Beijing 100034, China
    4Jilin Academy of Forestry Science, Changchun 130033, China
  • Received:2017-04-05 Accepted:2016-04-14 Online:2017-07-19 Published:2017-06-10
  • Contact: Rui GUO
  • About author:

    KANG Jing-yao(1991-), E-mail:


Aims The aim of this study was to investigate the effects of alkaline stress on primary, secondary metabolites and metabolic pathways in the roots of wheat (Triticum aestivum). The results were used to evaluate the physiological adaptive mechanisms by which wheat tolerated alkali stress.Methods A pot experiment was carried out in the greenhouse. For each plastic pot, five wheat seeds were planted. After germination, seedlings were allowed to grow under controlled water and nutrient conditions for two months, then seedlings were exposed to alkaline stress (NaHCO3-Na2CO3) for 12 days. The relative growth rate (RGR), absolute water content (AWC), metal elements, free cations and metabolites were measured.Important findings The alkaline stress caused the reduction of RGR and AWC. Alkaline stress caused a rapid increase of Na content with the concurrent decrease in K and Cl content, resulting in inhibited metal element accumulation and an ionic imbalance. In the present study, alkaline stress strongly enhanced Ca accumulation in wheat roots, suggesting that an increased Ca concentration can immediately trigger the salt overly sensitive (SOS)-Na exclusion system and reduce Na-associated injuries. Also, 70 metabolites, including organic acids, amino acids, sugars/polyols and others, behaved differently in the alkaline stress treatments according to a GC-MS analysis. The metabolic profiles of wheat were closely associated with alkaline-stress conditions. Alkaline stress caused the accumulation of organic acids, accompanied by the depletion of sugars/polyols and amino acids. Organic acids could play a central role in the regulation of intracellular pH by accumulating vacuoles to neutralize excess cations. Glycolysis and amino acid synthesis in roots were inhibited under salt stress while prolonged alkaline stress led to a progressive tricarboxylic acid (TCA) cycle. The severe negative effects of alkaline stress on sugar synthesis and storage may reflect the toxic levels of Na+ accumulating in plant cells in a high-pH environment, implying that the reactive oxygen species detoxification capacity was diminished by the high pH. A lack of NO3- in wheat roots can decrease synthase enzyme activities, limiting the synthesis of amino acids. Under salt stress, the TCA cycle and organic acid accumulation increased, but glycolysis and amino acid synthesis were inhibited in roots. Thus, energy levels and high concentrations of organic acids may be the key adaptive mechanisms by which wheat seedlings maintain their intracellular ion balance under alkaline stress.

Key words: wheat (Triticum aestivum), alkaline stress, roots, growth characters, metabolic profiles

Table 1

The electrical conductivity (EC), pH value and osmotic potential of salinity stress treatment solutions"

EC (dS·m-1)
Osmotic potential
pH value
对照 Control 0 2.16 -0.05 6.95
Alkaline stress
50 4.98 -0.28 9.69
100 9.21 -0.51 9.92

Fig. 1

Effects of alkaline concentration on root relative growth rate (RGR) and absolute water content (AWC) (mean ± SE, n = 5). Different lowercase letters indicate significant differences among the various treatments (p < 0.05)."

Table 2

Effects of alkaline stress on the contents of metal elements in the roots of wheat seedlings (mean ± SE, n = 5)"

Alkaline concentration
矿质元素 Metal elements (mmol·g-1 dry mass)
Na K Ca Mg Cu Fe Zn Mn
对照 Control 0 4.25 ± 1.01b 69.90 ± 3.03a 17.11 ± 1.01b 7.80 ± 0.29a 1.25 ± 0.04a 1.56 ± 0.08a 0.07 ± 0.01a 0.06 ± 0.00a
Alkaline stress
50 15.89 ± 2.06 ab 45.20 ± 1.54b 20.53 ± 1.00b 6.01 ± 0.16b 1.02 ± 0.02a 1.26 ± 0.03a 0.05 ± 0.00b 0.05 ± 0.00a
100 19.09 ± 2.11a 16.83 ± 1.02c 32.85 ± 1.30a 4.96 ± 0.47c 0.55 ± 0.03b 0.84 ± 0.05b 0.03 ± 0.00c 0.06 ± 0.00a

Table 3

Effects of alkaline stress on the contents of Cl-, NO3-, H2PO4-, SO42- in the roots of wheat seedlings (mean ± SE, n = 5)."

Alkaline concentration (mmol)
阴离子 Anions (mmol·g-1 dry mass)
Cl- NO3- H2PO4- SO42-
对照 Control 0 0.12 ± 0.01a 0.41 ± 0.02a 0.05 ± 0.00a 0.03 ± 0.00a
碱胁迫 Alkaline stress 50 0.09 ± 0.00b 0.34 ± 0.01b 0.03 ± 0.01b 0.02 ± 0.00a
100 0.04 ± 0.01c 0.07 ± 0.00c 0.02 ± 0.00b 0.03 ± 0.00a

Fig. 2

SIMCA analyzed score plots showing the metabolomic trajectory of roots of wheat seedlings under different salinity concentration treatments. Principal component analysis (PCA) score plots (A). Orthogonal partial least squares discriminant analysis (OPLS-DA) scores: CK vs. AS-50 mmol·L-1 (B) and CK vs. AS-100 mmol·L-1 (C)."

Table 4

Relative concentration and changes of major metabolites in roots of wheat seedlings after alkaline stress treatment"

Metabolic pathways and metabolites
相对含量 Relative concentration 倍性变量Fold changes
CK AS-50 mmol AS-100 mmol log2(50/CK) log2(100/CK)
Tricarboxylic acid cycle
柠檬酸 Citric acid 75.73 150.14 231.23 0.99* 1.61**
乌头酸 Aconitic acid 1.34 1.70 5.13 0.34 1.93**
α-酮戊二酸 α-ketoglutaric acid 0.18 0.33 0.85 0.89 2.23**
琥珀酸 Succinic acid 19.05 61.45 120.69 1.69** 2.66**
延胡索酸 Fumaric acid 1.34 1.56 9.63 0.23 2.85**
苹果酸 Malic acid 10.47 23.10 30.35 1.14* 1.54**
葡萄糖 Glucose 26.37 13.67 7.91 -0.95* -1.74**
葡萄糖-6-磷酸 Fructose-6-phosphate 0.57 0.25 0.08 -1.16* -2.75**
果糖-6-磷酸 Glucose-6-phosphate 0.22 0.13 0.04 -0.80 -2.58**
3-磷酸甘油酸 3-phosphoglyceric acid 0.50 0.34 0.11 -0.57 -2.19**
丙酮酸 Pyruvate 0.54 0.50 0.31 -0.10 -0.81
磷酸烯醇式丙酮酸 Enolphosphopyruvate 0.73 0.61 0.22 -0.26 -1.74**
Shikimic path way
莽草酸 Shikimic acid 1.84 1.22 3.84 -0.60 1.06*
奎尼酸 Quinic acid 4.17 6.17 23.11 0.58 2.47**
苯丙氨酸 Phenylalanine 0.65 0.17 0.11 -1.91* -2.60**
色氨酸 Tryptophan 0.05 0.03 0.02 -0.71 -1.45*
酪氨酸 Tyrosine 1.59 0.03 0.02 -4.18** -6.57**
肉桂酸 Cinnamic acid 0.25 0.15 0.12 -0.77 -1.12*
Metabolism of
plasma membrane
肌醇 Myo-inositol 19.17 9.63 3.07 -0.99* -2.64**
甘氨酸 Glycine 0.74 0.34 0.12 -1.56** -2.69**
丝氨酸 Serine 17.83 9.56 1.64 -0.90* -3.44**
乙醇胺 Ethanolamine 20.23 11.31 3.26 -0.84* -2.63**
Amino acid
γ-氨基丁酸 γ-aminobutyric acid 137.19 41.77 23.92 -1.72** -2.52**
丙氨酸 Alanine 106.58 56.88 10.64 -0.91* -3.32**
谷氨酸 Glutamate 24.93 13.73 8.40 -0.86* -1.57**
天冬酰胺 Asparagine 12.65 4.38 0.91 -1.53** -3.79**
天冬氨酸 Aspartic acid 7.60 4.06 3.34 -0.90* -1.19*
脯氨酸 Proline 10.04 15.47 11.57 0.62 0.20
赖氨酸 Lysine 17.32 0.33 0.11 -5.72** -7.26**
Sugars and polyols
果糖 Fructose 814.31 574.62 173.68 -0.78* -2.23**
蔗糖 Sucrose 136.11 92.04 65.17 -0.56 -1.06*
塔罗糖 Talose 114.17 75.07 23.13 -0.60 -2.30**
蔗果三糖 Kestose 57.63 42.47 19.69 -0.44 -1.55**
核糖 Ribose 8.24 4.25 1.38 -0.96* -2.58**

Fig. 3

Proposed metabolic network changes for wheat roots upon alkaline stress obtained from OPLS-DA analysis. The metabolite with white boxes denotes no significant change while red boxes denotes significant increases and green ones denotes significant decreases (p < 0.05)."

[1] Deng RL, Xu HR, Cao YF, Xiao K (2007). The molecular basis of ammonium transporters in plants.Plant Nutrition and Fertilizer Science, 13, 512-519. (in Chinese with English abstract)[邓若磊, 徐海荣, 曹云飞, 肖凯 (2007). 植物吸收铵态氮的分子生物学基础. 植物营养与肥料学报, 13, 512-519.]
[2] FAO (
[3] Guo R, Li F, Zhou J, Li HR, Xia X, Liu Q (2016). Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses. Chinese Journal of Plant Ecology, 40, 69-79. (in Chinese with English abstract)[郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪 (2016). 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 40, 69-79.]
[4] Guo W, Yu LH (2012). Effects of salinity-alkalinity stress on root activity and phenylalanine ammonia-lyase activity of wheat seedlings.Crops, (1), 31-34. (in Chinese with English abstract)[郭伟, 于立河 (2012). 盐碱胁迫对小麦幼苗根系活力和苯丙氨酸解氨酶活性的影响. 作物杂志, (1), 31-34.]
[5] Hu HY, He J, Zhao JJ, Ru ZG (2013). Dynamic change of cell defense enzyme activity in wheat seedling under different alkaline pH conditions.Journal of Henan Institute of Science and Technology (Natural Science Edition), 41(5), 1-5. (in Chinese with English abstract)[胡海燕, 贺杰, 赵俊杰, 茹振刚 (2013). 碱性pH条件下小麦幼苗保护酶活性的变化动态. 河南科技学院学报(自然科学版), 41(5), 1-5.]
[6] Jianaer AH, Yang CW, Shi DC, Wang DL (2007). Physiological response of an alkali resistant halophyte Kochia sieversiana to salt and alkali stresses. Acta Botanica Boreali-Occidentalia Sinica, 27, 79-84. (in Chinese with English abstract)[贾娜尔·阿汗, 杨春武, 石德成, 王德利 (2007). 盐生植物碱地肤对盐碱胁迫的生理响应特点. 西北植物学报, 27, 79-84. ]
[7] Jiang SX, Liu DX, Pang HX, Lü JY (2014). Effects of PEG stress and recovery on activities of key enzymes involved in proline metabolism in wheat cultivars with difference in drought tolerance.Acta Botanica Boreali-Occidentalia Sinica, 34, 1581-1587. (in Chinese with English abstract)[姜淑欣, 刘党校, 庞红喜, 吕金印 (2014). PEG胁迫及复水对不同抗旱性小麦幼苗脯氨酸代谢关键酶活性的影响. 西北植物学报, 34, 1581-1587.]
[8] Kerepesi I, Galiba G (2000). Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings.Crop Science, 40, 482-487.
[9] Kingsbury RW, Epstein E, Peary RW (1984). Physiological responses to salinity in selected lines of wheat. Plant Physiology, 74, 417-423.
[10] Li B, Wang ZC, Sun ZG, Chen Y, Yang F (2005). Resources and sustainable resource exploitation of salinized land in China.Agricultural Research in the Arid Areas, 23(2), 152-158. (in Chinese with English abstract)[李彬, 王志春, 孙志高, 陈渊, 杨福 (2005). 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 23(2), 152-158.]
[11] Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants.Nature Protocol, 1, 387-396.
[12] Luo YY, Liu SK (2009). Research progress of ammonium transporter in plants.Genomics and Applied Biology, 28, 373-379. (in Chinese with English abstract)[骆媛嫒, 柳参奎 (2009). 植物中铵转运蛋白的研究进展. 基因组学与应用生物学, 28, 373-379.]
[13] Munns R, Tester M (2008). Mechanisms of salinity tolerance.Annual Review of Plant Biology, 59, 651-681.
[14] Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: A review.Ecotoxicology and Environmental Safety, 60, 324-349.
[15] Parvaneh R, Shahrokh T, Hosseini SM (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulace oloracea L.) leaves. Stress Physiology & Biochemistry, 8, 182-193.
[16] Peng ZH, Peng KQ, Hu JJ, Xiao LT (2002). Research progress on accumulation of proline under osmotic stress in plants.Chinese Agriculture Science Bulletin, 18(4), 80-83. (in Chinese with English abstract)[彭志红, 彭克勤, 胡家金, 萧浪涛 (2002). 渗透胁迫下植物脯氨酸积累的研究进展. 中国农学通报, 18(4), 80-83.]
[17] Sa RL, Liu JH, Liu L, Bai JH, Wang ZH (2014). Cation- responsive mechanisms of oats to alkali stress.Acta Agronomica Sinica, 40, 362-368. (in Chinese with English abstract)[萨如拉, 刘景辉, 刘伟, 白健慧, 王占海 (2014). 燕麦对碱胁迫的阳离子响应机制. 作物学报, 40, 362-368.]
[18] Shi DC, Wang DL (2005). Effects of various salt-alkaline mixed stresses onAneurolepidium chinense (Trin.) Kitag. Plant and Soil, 271, 15-26.
[19] Shi LX, Ma S, Fang Y, Xu J (2015). Crucial variations in growth and ion homeostasis of glycine gracilis seedlings under two types of salt stresses.Journal of Soil Science and Plant Nutrition, 15, 1-17.
[20] Wang H, Wu ZH, Han JY, Zheng W, Yang CW (2012). Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants.PLOS ONE, 7, e37817. doi: 10.1371/journal.pone.0037817.
[21] Wang JY, Zhu SG, Xu CF (2002). Biochemistry. 3rd edn. Higher Education Press, Beijing. (in Chinese)[王镜岩, 朱圣庚, 徐长法 (2002). 生物化学. 第三版. 高等教育出版社, 北京.]
[22] Wang XD, Wang C, Ma ZH, Hou RF, Gao Q, Chen Q (2011). Effect of short-term salt stress on the absorption of K+ and accumulation of Na+, K+ in seedlings of different wheat varieties.Acta Ecologica Sinica, 31, 2822-2830. (in Chinese with English abstract)[王晓冬, 王成, 马智宏, 侯瑞锋, 高权, 陈泉 (2011). 短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响. 生态学报, 31, 2822-2830.]
[23] Wang XP, Geng SJ, Ri YJ, Cao DH, Liu J, Shi DC, Yang CW (2011). Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses.Scientia Horticulturae, 130, 248-255.
[24] Wu DZ, Shen QF, Cai SG, Chen ZH, Dai F, Zhang GP (2013). Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley.Plant & Cell Physiology, 54, 1976-1988.
[25] Yang CW, Li CY, Zhang ML, Liu J, Ju M, Shi DC (2008). pH and ion balance in wheat-wheatgrass under salt-or alkali stress.Chinese Journal of Applied Ecology, 19, 1000-1005. (in Chinese with English abstract)[杨春武, 李长有, 张美丽, 刘杰, 鞠淼, 石德成 (2008). 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 19, 1000-1005.]
[26] Yang C, Shi D, Wang D (2008). Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyteSuaeda glauca(Bge.). Plant Growth Regulation, 56, 179-190.
[27] Yang T, Xie ZX, Yu Q, Liu XJ (2014). Effects of partial root salt stress on seedling growth and photosynthetic characteristics of winter wheat.Chinese Journal of Eco- Agrculture, 22, 1074-1078. (in Chinese with English abstract)[杨婷, 谢志霞, 喻琼, 刘小京 (2014). 局部根系盐胁迫对冬小麦生长和光合特征的影响. 中国生态农业学报, 22, 1074-1078.]
[28] Yu RP (1999). Saline soil resources in China and their exploitation.Chinese Journal of Soil Science, 30(4), l58-159. (in Chinese with English abstract)[俞仁培 (1999). 我国盐渍土资源及其开发利用. 土壤通报, 30(4), l58-159.]
[29] Zhu JK (2003). Regulation of ion homeostasis under salt stress.Current Opinion in Plant Biology, 6, 441-445.
[1] Liu Ming, Liu Xia, Sun Ran, Li Yuling, Du Kejiu. Polychlorinated Biphenyls Promotes Differentiation on Adventitious Roots of Populous tomentosa [J]. Chin Bull Bot, 2018, 53(6): 764-772.
[2] Shuhua Guo, Yongjiang Sun, Yanjie Niu, Ning Han, Heng Zhai, Yuanpeng Du. Effect of Alkaline Salt Stress on Photosystem Activity of Grape F1 Generation Hybrids [J]. Chin Bull Bot, 2018, 53(2): 196-202.
[3] ZI Hong-Biao, CHEN Yan, HU Lei, WANG Chang-Ting. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan [J]. Chin J Plan Ecolo, 2018, 42(1): 38-49.
[4] Shuhua Guo, Heng Zhai, Ning Han, Yuanpeng Du. Evaluation on Alkaline Salt Tolerance of Grape F1 Generation Hybrids [J]. Chin Bull Bot, 2018, 53(1): 51-58.
[5] Fu Qingqing, Sun Lulong, Zhai Heng, Du Yuanpeng. Salt Tolerant Evaluation of F1-generation Hybrids in Grape [J]. Chin Bull Bot, 2017, 52(6): 733-742.
[6] Jian-Rong GUO, Xian-Chong WAN. Circadian rhythm of root pressure in popular and its driving factors [J]. Chin J Plan Ecolo, 2017, 41(3): 369-377.
[7] Zhi-Ying NING, Yu-Lin LI, Hong-Ling YANG, Dian-Chao SUN, Jing-Dong BI. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land [J]. Chin J Plan Ecolo, 2017, 41(10): 1069-1080.
[8] Xizi Shi, Yapeng Guo, Heping Shi. Effect of Paclobutrazol on Growth and Production of Esculentoside A in Hairy Roots of Phytolacca americana [J]. Chin Bull Bot, 2016, 51(6): 801-806.
[9] Heping Shi, Bei Wang, Shunan Yang, Yapeng Guo. Induction of Hairy Roots of Dianthus chinensis and Its Plant Regeneration [J]. Chin Bull Bot, 2016, 51(3): 363-368.
[10] Rui GUO, Ji ZHOU, Fan YANG, Feng LI, Hao-Ru LI, Xu XIA, Qi LIU. Growth metabolism of wheat under drought stress at the jointing-booting stage [J]. Chin J Plan Ecolo, 2016, 40(12): 1319-1327.
[11] WANG Na,ZHANG Yun,QIAN Wen-Li,WANG Zheng-Quan,GU Jia-Cun. Effects of elevated CO2 concentration on root and needle anatomy and physiological functions in Pinus koraiensis seedlings [J]. Chin J Plan Ecolo, 2016, 40(1): 60-68.
[12] GUO Rui,LI Feng,ZHOU Ji,LI Hao-Ru,XIA Xu,LIU Qi. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses [J]. Chin J Plan Ecolo, 2016, 40(1): 69-79.
[13] Xingguang Dong, Yufen Cao, Kun Wang, Luming Tian, Ying Zhang, Dan Qi. Comparison of the Characters and Distribution of Vessel Elements in Xylem Among Three Main Pear Rootstocks in China [J]. Chin Bull Bot, 2015, 50(2): 227-233.
[14] GU Dong-Xiang, TANG Liang, XU Qi-Jun, LEI Xiao-Jun, CAO Wei-Xing, ZHU Yan. Root growth and distribution in rice cultivars as affected by nitrogen and water supply [J]. Chin J Plan Ecolo, 2011, 35(5): 558-566.
[15] LI Zhi-Yong, WANG Yan-Hui, YU Peng-Tao, ZHANG Zhi-Jun, DU Shi-Cai, HE Ping, WANG Xiang, DUAN Jian, LI Zhen-Hua. Soil chemical properties and growth characteristics of mixed plantation of Pinus massoniana and Cinnamomum camphora in the acid rain region of Chongqing, China [J]. Chin J Plan Ecolo, 2010, 34(4): 387-395.
Full text



[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .