Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (4): 387-395.DOI: 10.3773/j.issn.1005-264x.2010.04.004
• Research Articles • Previous Articles Next Articles
LI Zhi-Yong1,2,*(), WANG Yan-Hui2,**(), YU Peng-Tao2, ZHANG Zhi-Jun2, DU Shi-Cai3, HE Ping3, WANG Xiang4, DUAN Jian5, LI Zhen-Hua1
Received:
2009-05-25
Accepted:
2009-10-30
Online:
2010-05-25
Published:
2010-04-01
Contact:
WANG Yan-Hui
LI Zhi-Yong, WANG Yan-Hui, YU Peng-Tao, ZHANG Zhi-Jun, DU Shi-Cai, HE Ping, WANG Xiang, DUAN Jian, LI Zhen-Hua. Soil chemical properties and growth characteristics of mixed plantation of Pinus massoniana and Cinnamomum camphora in the acid rain region of Chongqing, China[J]. Chin J Plant Ecol, 2010, 34(4): 387-395.
项目 Item | 香樟根系 Roots of Cinnamomum camphora | 马尾松根系 Roots of Pinus massoniana |
---|---|---|
外形 Appearance | 各径级的根较直 The roots of different diameters were relatively straight | 各径级的根较弯曲 The roots of different diameters were relatively curved |
颜色 Color | 新生的细根为带黄色的乳白色, 径级2-5、5-10和>10 mm的根分别为淡黄棕色、棕褐色和棕黄色 The newly born fine roots were milk white with a tincture of yellow, and the roots of 2-5 mm diameter, the roots of 5-10 mm diameter and the roots of >10 mm diameter were pale yellowish brown, dark brown and brownish yellow, respectively | 新生的细根为带棕色的乳白色, 径级2-5、5-10和>10 mm的根分别为淡棕红色、浅棕红色和棕红色 The newly born fine roots were milk white with a tincture of brown, and the roots of 2-5 mm diameter, the roots of 5-10 mm diameter and the roots of >10 mm diameter were pale brownish red, light brownish red and brownish red, respectively |
弹性 Elasticity | 各径级的根弹性较小, 弯曲时易折断 The roots of different diameters had low flexibility and were easily broken when bent | 各径级的根弹性较大, 弯曲时不易折断 The roots of different diameters were flexible and not easily broken when bent |
表皮剥离的难易程度 The degree of difficulty to peel off the epidermis | 各径级的根的表皮不易剥离 It was difficult to peel off the epidermis of the roots of different diameters | 各径级的根的表皮易剥离 It was easy to peel off the epidermis of the roots of different diameters |
气味 Odor | 各径级的根具有香樟特有的清香气味 The roots of different diameters had faint scent typical of Cinnamomum camphora | 各径级的根具有松脂气味 The roots of different diameters had odor of pine resin |
Table 1 Comparison of roots of Cinnamomum camphora and Pinus massoniana
项目 Item | 香樟根系 Roots of Cinnamomum camphora | 马尾松根系 Roots of Pinus massoniana |
---|---|---|
外形 Appearance | 各径级的根较直 The roots of different diameters were relatively straight | 各径级的根较弯曲 The roots of different diameters were relatively curved |
颜色 Color | 新生的细根为带黄色的乳白色, 径级2-5、5-10和>10 mm的根分别为淡黄棕色、棕褐色和棕黄色 The newly born fine roots were milk white with a tincture of yellow, and the roots of 2-5 mm diameter, the roots of 5-10 mm diameter and the roots of >10 mm diameter were pale yellowish brown, dark brown and brownish yellow, respectively | 新生的细根为带棕色的乳白色, 径级2-5、5-10和>10 mm的根分别为淡棕红色、浅棕红色和棕红色 The newly born fine roots were milk white with a tincture of brown, and the roots of 2-5 mm diameter, the roots of 5-10 mm diameter and the roots of >10 mm diameter were pale brownish red, light brownish red and brownish red, respectively |
弹性 Elasticity | 各径级的根弹性较小, 弯曲时易折断 The roots of different diameters had low flexibility and were easily broken when bent | 各径级的根弹性较大, 弯曲时不易折断 The roots of different diameters were flexible and not easily broken when bent |
表皮剥离的难易程度 The degree of difficulty to peel off the epidermis | 各径级的根的表皮不易剥离 It was difficult to peel off the epidermis of the roots of different diameters | 各径级的根的表皮易剥离 It was easy to peel off the epidermis of the roots of different diameters |
气味 Odor | 各径级的根具有香樟特有的清香气味 The roots of different diameters had faint scent typical of Cinnamomum camphora | 各径级的根具有松脂气味 The roots of different diameters had odor of pine resin |
林分 Stand | 层次 Layer (cm) | 交换性阳离子 Exchangeable cation (cmol(+)·kg-1) | 盐基饱和度Base saturation (%) | pH (KCl) | |||||
---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | Al3+ | H+ | ||||
马尾松香樟 混交林 Mixed plantation of P. massoniana and C. camphora | 腐殖质层 Humus layer (0.63) | 0.228 0 ± 0.011 2a | 0.069 5 ± 0.007 4d | 1.647 3 ± 0.009 1a | 0.362 6 ± 0.008 1a | 3.976 3 ± 0.201 8b | 3.876 7 ± 0.075 4b | 22.02 | 3.37±0.01c |
0-20 | 0.041 2 ± 0.002 1b | 0.087 7 ± 0.005 3d | 0.316 8 ± 0.006 3e | 0.081 4 ± 0.005 5d | 1.367 0 ± 0.093 2d | 1.984 0 ± 0.088 5d | 13.44 | 3.97±0.02b | |
20-40 | 0.027 7 ± 0.002 9c | 0.085 9 ± 0.004 6d | 1.061 8 ± 0.010 4b | 0.149 2 ± 0.007 2c | 1.570 0 ± 0.094 7 d | 2.018 0 ± 0.132 3d | 26.75 | 3.92 ± 0.02b | |
40-60 | 0.030 0 ± 0.002 5c | 0.100 1 ± 0.008 2d | 1.107 4 ± 0.007 9b | 0.293 0 ± 0.008 1b | 1.500 7 ± 0.084 4d | 2.045 2 ± 0.095 6d | 29.21 | 4.07 ± 0.03a | |
马尾松纯林 Pure P. massoniana plantation | 腐殖质层 Humus layer (1.99) | 0.206 1 ± 0.010 3a | 0.109 4 ± 0.007 5d | 1.638 3 ± 0.019 8a | 0.306 0 ± 0.012 0b | 6.404 6 ± 0.231 6a | 5.934 7 ± 0.120 4a | 14.99 | 3.02 ± 0.03d |
0-20 | 0.047 2 ± 0.003 3b | 0.093 8 ± 0.009 9d | 0.277 3 ± 0.008 4e | 0.059 2 ± 0.009 0e | 2.180 5 ± 0.214 6c | 2.446 7 ± 0.208 0c | 9.25 | 3.78 ± 0.10b | |
20-40 | 0.009 8 ± 0.000 8d | 0.114 2 ± 0.006 9d | 0.403 2 ± 0.015 2d | 0.097 3 ± 0.005 1d | 2.151 8 ± 0.210 0c | 2.498 8 ± 0.130 4c | 11.68 | 3.88 ± 0.02b | |
40-60 | 0.027 0 ± 0.003 0c | 0.094 2 ± 0.006 0d | 0.927 6 ± 0.006 7c | 0.203 8 ± 0.017 2c | 2.077 1 ± 0.209 9c | 2.483 9 ± 0.095 2c | 20.96 | 3.89 ± 0.03b | |
香樟纯林 Pure C. camphora plantation | 腐殖质层 Humus layer (0.80) | 0.179 8 ± 0.009 4a | 0.080 4 ± 0.003 0d | 1.651 8 ± 0.007 8a | 0.373 4 ± 0.007 7a | 3.392 1 ± 0.190 4b | 3.070 0 ± 0.058 5c | 25.15 | 3.53 ± 0.02c |
0-20 | 0.023 1 ± 0.002 0c | 0.090 9 ± 0.006 2d | 0.407 2 ± 0.003 1d | 0.092 4 ± 0.004 8d | 1.664 4 ± 0.106 7c | 2.254 1 ± 0.121 6c | 13.11 | 3.91 ± 0.09b | |
20-40 | 0.008 7 ± 0.001 1d | 0.095 2 ± 0.004 7d | 1.188 1 ± 0.011 5b | 0.299 6 ± 0.010 1b | 0.719 8 ± 0.017 4e | 1.021 7 ± 0.118 9e | 45.06 | 4.23 ± 0.02a | |
40-60 | 0.021 6 ± 0.002 5c | 0.078 0 ± 0.005 7d | 1.499 5 ± 0.009 2a | 0.441 8 ± 0.013 1a | 0.220 2 ± 0.013 6f | 0.459 7 ± 0.014 5f | 55.14 | 4.62 ± 0.02a |
Table 2 Chemical properties in the humus and soil layers for the mixed plantation of Pinus massoniana and Cinnamomum camphora and pure plantations of P. massoniana and C. camphora
林分 Stand | 层次 Layer (cm) | 交换性阳离子 Exchangeable cation (cmol(+)·kg-1) | 盐基饱和度Base saturation (%) | pH (KCl) | |||||
---|---|---|---|---|---|---|---|---|---|
K+ | Na+ | Ca2+ | Mg2+ | Al3+ | H+ | ||||
马尾松香樟 混交林 Mixed plantation of P. massoniana and C. camphora | 腐殖质层 Humus layer (0.63) | 0.228 0 ± 0.011 2a | 0.069 5 ± 0.007 4d | 1.647 3 ± 0.009 1a | 0.362 6 ± 0.008 1a | 3.976 3 ± 0.201 8b | 3.876 7 ± 0.075 4b | 22.02 | 3.37±0.01c |
0-20 | 0.041 2 ± 0.002 1b | 0.087 7 ± 0.005 3d | 0.316 8 ± 0.006 3e | 0.081 4 ± 0.005 5d | 1.367 0 ± 0.093 2d | 1.984 0 ± 0.088 5d | 13.44 | 3.97±0.02b | |
20-40 | 0.027 7 ± 0.002 9c | 0.085 9 ± 0.004 6d | 1.061 8 ± 0.010 4b | 0.149 2 ± 0.007 2c | 1.570 0 ± 0.094 7 d | 2.018 0 ± 0.132 3d | 26.75 | 3.92 ± 0.02b | |
40-60 | 0.030 0 ± 0.002 5c | 0.100 1 ± 0.008 2d | 1.107 4 ± 0.007 9b | 0.293 0 ± 0.008 1b | 1.500 7 ± 0.084 4d | 2.045 2 ± 0.095 6d | 29.21 | 4.07 ± 0.03a | |
马尾松纯林 Pure P. massoniana plantation | 腐殖质层 Humus layer (1.99) | 0.206 1 ± 0.010 3a | 0.109 4 ± 0.007 5d | 1.638 3 ± 0.019 8a | 0.306 0 ± 0.012 0b | 6.404 6 ± 0.231 6a | 5.934 7 ± 0.120 4a | 14.99 | 3.02 ± 0.03d |
0-20 | 0.047 2 ± 0.003 3b | 0.093 8 ± 0.009 9d | 0.277 3 ± 0.008 4e | 0.059 2 ± 0.009 0e | 2.180 5 ± 0.214 6c | 2.446 7 ± 0.208 0c | 9.25 | 3.78 ± 0.10b | |
20-40 | 0.009 8 ± 0.000 8d | 0.114 2 ± 0.006 9d | 0.403 2 ± 0.015 2d | 0.097 3 ± 0.005 1d | 2.151 8 ± 0.210 0c | 2.498 8 ± 0.130 4c | 11.68 | 3.88 ± 0.02b | |
40-60 | 0.027 0 ± 0.003 0c | 0.094 2 ± 0.006 0d | 0.927 6 ± 0.006 7c | 0.203 8 ± 0.017 2c | 2.077 1 ± 0.209 9c | 2.483 9 ± 0.095 2c | 20.96 | 3.89 ± 0.03b | |
香樟纯林 Pure C. camphora plantation | 腐殖质层 Humus layer (0.80) | 0.179 8 ± 0.009 4a | 0.080 4 ± 0.003 0d | 1.651 8 ± 0.007 8a | 0.373 4 ± 0.007 7a | 3.392 1 ± 0.190 4b | 3.070 0 ± 0.058 5c | 25.15 | 3.53 ± 0.02c |
0-20 | 0.023 1 ± 0.002 0c | 0.090 9 ± 0.006 2d | 0.407 2 ± 0.003 1d | 0.092 4 ± 0.004 8d | 1.664 4 ± 0.106 7c | 2.254 1 ± 0.121 6c | 13.11 | 3.91 ± 0.09b | |
20-40 | 0.008 7 ± 0.001 1d | 0.095 2 ± 0.004 7d | 1.188 1 ± 0.011 5b | 0.299 6 ± 0.010 1b | 0.719 8 ± 0.017 4e | 1.021 7 ± 0.118 9e | 45.06 | 4.23 ± 0.02a | |
40-60 | 0.021 6 ± 0.002 5c | 0.078 0 ± 0.005 7d | 1.499 5 ± 0.009 2a | 0.441 8 ± 0.013 1a | 0.220 2 ± 0.013 6f | 0.459 7 ± 0.014 5f | 55.14 | 4.62 ± 0.02a |
林分 Stand | 取样位置 Sampling position | 根系类型 Root type | 根系直径 Root diameter (mm) | 干重总密度 Total dry weight density (g·m-3) | 长度总密度 Total length density (m·m-3) | 表面积总密度 Total surface area density (m2·m-3) | 体积总密度 Total volume density (cm3·m-3) | 根尖总密度 Total root tip density (No.·m-3) |
---|---|---|---|---|---|---|---|---|
马尾松香樟混交林 Mixed plantation of P. massoniana and C. camphora | 香樟树冠下 Under crowns of C. camphora trees | 香樟根系 Roots of C. camphora | ≤2 | 1 746.29 ± 55.67b | 22 908.74 ± 1101.72a | 62.92 ± 5.50a | 13 802.72 ± 341.16a | 2 492 299 ± 260 254a |
>2 | 2 608.20 ± 80.31a | 337.08 ± 14.31f | 4.07 ± 0.40d | 11 184.98 ± 277.52a | ||||
合计 Total | 4 354.49 | 23 245.82 | 66.99 | 24 987.70 | ||||
马尾松根系 Roots of P. massoniana | ≤2 | 32.27 ± 1.99g | 239.91 ± 10.08g | 0.64 ± 0.02f | 142.61 ± 3.40i | 25 994 ± 2 184e | ||
>2 | 102.51 ± 3.47f | 44.46 ± 2.38h | 0.49 ± 0.02f | 425.27 ± 9.12h | ||||
合计 Total | 134.78 | 284.37 | 1.13 | 567.88 | ||||
马尾松树冠下 Under crowns of P. massoniana trees | 香樟根系 Roots of Cinnamomum camphora | ≤2 | 248.38 ± 7.09d | 3 837.30 ± 189.69b | 10.99 ± 1.02b | 2 533.39 ± 61.58e | 435 065 ± 32 401c | |
>2 | 176.50 ± 5.23e | 62.56 ± 3.16h | 0.71 ± 0.03f | 743.64 ± 17.64g | ||||
合计 Total | 424.88 | 3 899.86 | 11.70 | 3 277.03 | ||||
马尾松根系 Roots of P. massoniana | ≤2 | 280.43 ± 7.87d | 3 077.72 ± 149.15c | 7.78 ± 0.71c | 1 574.85 ± 36.41f | 392 091 ± 30 253d | ||
>2 | 688.11 ± 21.58c | 214.18 ± 9.73g | 2.05 ± 0.20e | 2 293.40 ± 55.63e | ||||
合计 Total | 968.54 | 3 291.90 | 9.83 | 3 868.25 | ||||
马尾松纯林 Pure plant- ation of P. massoniana | 马尾松树冠下 Under crowns of P. massoniana trees | 马尾松根系 Roots of P. massoniana | ≤2 | 635.68 ± 19.12c | 4 325.66 ± 212.44b | 13.24 ± 1.10b | 3 395.27 ± 81.11d | 550 516 ± 45 781b |
>2 | 1 875.13 ± 57.66b | 435.76 ± 19.85e | 4.86 ± 0.41d | 6 403.00 ± 157.46c | ||||
合计 Total | 2 510.81 | 4 761.42 | 18.10 | 9 798.27 | ||||
香樟纯林 Pure plant- ation of C. camphora | 香樟树冠下Under crowns of C. camphora trees | 香樟根系 Roots of C. camphora | ≤2 | 1 599.48 ± 50.33b | 25 417.83 ± 1 228.05a | 64.33 ± 5.91a | 13 118.76 3 ± 25.47a | 3184 884 ± 323 210a |
>2 | 3 162.49 ± 94.01a | 693.52 ± 32.66d | 7.76 ± 0.71c | 9 595.72 ± 237.10b | ||||
合计 Total | 4 761.97 | 26 111.35 | 72.09 | 22 714.48 |
Table 3 Total density traits of roots in the humus layer and 0-60 cm soil layer for the mixed plantation of Pinus massoniana and Cinnamomum camphora and pure plantations of P. massoniana and C. camphora
林分 Stand | 取样位置 Sampling position | 根系类型 Root type | 根系直径 Root diameter (mm) | 干重总密度 Total dry weight density (g·m-3) | 长度总密度 Total length density (m·m-3) | 表面积总密度 Total surface area density (m2·m-3) | 体积总密度 Total volume density (cm3·m-3) | 根尖总密度 Total root tip density (No.·m-3) |
---|---|---|---|---|---|---|---|---|
马尾松香樟混交林 Mixed plantation of P. massoniana and C. camphora | 香樟树冠下 Under crowns of C. camphora trees | 香樟根系 Roots of C. camphora | ≤2 | 1 746.29 ± 55.67b | 22 908.74 ± 1101.72a | 62.92 ± 5.50a | 13 802.72 ± 341.16a | 2 492 299 ± 260 254a |
>2 | 2 608.20 ± 80.31a | 337.08 ± 14.31f | 4.07 ± 0.40d | 11 184.98 ± 277.52a | ||||
合计 Total | 4 354.49 | 23 245.82 | 66.99 | 24 987.70 | ||||
马尾松根系 Roots of P. massoniana | ≤2 | 32.27 ± 1.99g | 239.91 ± 10.08g | 0.64 ± 0.02f | 142.61 ± 3.40i | 25 994 ± 2 184e | ||
>2 | 102.51 ± 3.47f | 44.46 ± 2.38h | 0.49 ± 0.02f | 425.27 ± 9.12h | ||||
合计 Total | 134.78 | 284.37 | 1.13 | 567.88 | ||||
马尾松树冠下 Under crowns of P. massoniana trees | 香樟根系 Roots of Cinnamomum camphora | ≤2 | 248.38 ± 7.09d | 3 837.30 ± 189.69b | 10.99 ± 1.02b | 2 533.39 ± 61.58e | 435 065 ± 32 401c | |
>2 | 176.50 ± 5.23e | 62.56 ± 3.16h | 0.71 ± 0.03f | 743.64 ± 17.64g | ||||
合计 Total | 424.88 | 3 899.86 | 11.70 | 3 277.03 | ||||
马尾松根系 Roots of P. massoniana | ≤2 | 280.43 ± 7.87d | 3 077.72 ± 149.15c | 7.78 ± 0.71c | 1 574.85 ± 36.41f | 392 091 ± 30 253d | ||
>2 | 688.11 ± 21.58c | 214.18 ± 9.73g | 2.05 ± 0.20e | 2 293.40 ± 55.63e | ||||
合计 Total | 968.54 | 3 291.90 | 9.83 | 3 868.25 | ||||
马尾松纯林 Pure plant- ation of P. massoniana | 马尾松树冠下 Under crowns of P. massoniana trees | 马尾松根系 Roots of P. massoniana | ≤2 | 635.68 ± 19.12c | 4 325.66 ± 212.44b | 13.24 ± 1.10b | 3 395.27 ± 81.11d | 550 516 ± 45 781b |
>2 | 1 875.13 ± 57.66b | 435.76 ± 19.85e | 4.86 ± 0.41d | 6 403.00 ± 157.46c | ||||
合计 Total | 2 510.81 | 4 761.42 | 18.10 | 9 798.27 | ||||
香樟纯林 Pure plant- ation of C. camphora | 香樟树冠下Under crowns of C. camphora trees | 香樟根系 Roots of C. camphora | ≤2 | 1 599.48 ± 50.33b | 25 417.83 ± 1 228.05a | 64.33 ± 5.91a | 13 118.76 3 ± 25.47a | 3184 884 ± 323 210a |
>2 | 3 162.49 ± 94.01a | 693.52 ± 32.66d | 7.76 ± 0.71c | 9 595.72 ± 237.10b | ||||
合计 Total | 4 761.97 | 26 111.35 | 72.09 | 22 714.48 |
林分 Stand | 树种 Species | 优势木平均 冠层厚度 Mean canopy thickness of dominant trees (m) | 优势木 平均冠幅 Mean crown size of dominant trees (m) | 优势木平均 叶量损失率 Mean defoliation percentage of dominant trees (%) | 优势木平均 叶片变色率 Mean discoloration percentage of dominant trees (%) | 优势木 平均高度 Mean height of dominant trees (m) | 优势木 平均胸径 Mean diameter at breast height of dominant trees (cm) |
---|---|---|---|---|---|---|---|
马尾松香樟混交林 Mixed plantation of P. massoniana and C. camphora | 香樟 C. camphora | 3.33 ± 0.08a | 5.08 ± 0.20a | 13 ± 3b | 1 ± 0b | 10.3 ± 0.6a | 16.8 ± 0.4a |
马尾松 P. massoniana | 2.88 ± 0.03b | 3.36 ± 0.08b | 32 ± 10a | 15 ± 3a | 8.9 ± 0.1c | 14.0 ± 0.2b | |
马尾松纯林 Pure plantation of P. massoniana | 马尾松 P. massoniana | 3.08 ± 0.03b | 3.64 ± 0.10b | 29 ± 13a | 2 ± 1b | 9.5 ± 0.2b | 14.6 ± 0.3b |
香樟纯林 Pure plantation of C. camphora | 香樟 C. camphora | 3.27 ± 0.09a | 4.94 ± 0.18a | 11 ± 4b | 1 ± 0b | 10.4 ± 0.6a | 16.5 ± 0.4a |
Table 4 Aboveground growth traits of dominant trees for the mixed plantation of Pinus massoniana and Cinnamomum camphora and pure plantations of P. massoniana and C. camphora
林分 Stand | 树种 Species | 优势木平均 冠层厚度 Mean canopy thickness of dominant trees (m) | 优势木 平均冠幅 Mean crown size of dominant trees (m) | 优势木平均 叶量损失率 Mean defoliation percentage of dominant trees (%) | 优势木平均 叶片变色率 Mean discoloration percentage of dominant trees (%) | 优势木 平均高度 Mean height of dominant trees (m) | 优势木 平均胸径 Mean diameter at breast height of dominant trees (cm) |
---|---|---|---|---|---|---|---|
马尾松香樟混交林 Mixed plantation of P. massoniana and C. camphora | 香樟 C. camphora | 3.33 ± 0.08a | 5.08 ± 0.20a | 13 ± 3b | 1 ± 0b | 10.3 ± 0.6a | 16.8 ± 0.4a |
马尾松 P. massoniana | 2.88 ± 0.03b | 3.36 ± 0.08b | 32 ± 10a | 15 ± 3a | 8.9 ± 0.1c | 14.0 ± 0.2b | |
马尾松纯林 Pure plantation of P. massoniana | 马尾松 P. massoniana | 3.08 ± 0.03b | 3.64 ± 0.10b | 29 ± 13a | 2 ± 1b | 9.5 ± 0.2b | 14.6 ± 0.3b |
香樟纯林 Pure plantation of C. camphora | 香樟 C. camphora | 3.27 ± 0.09a | 4.94 ± 0.18a | 11 ± 4b | 1 ± 0b | 10.4 ± 0.6a | 16.5 ± 0.4a |
取样位置 Sampling position | 细根类型 Fine root type | 层次 Layer (cm) | 干重密度 Dry weight density (g·m-3) | 长度密度 Length density (m·m-3) | 表面积密度 Surface area density (m2·m-3) | 体积密度 Volume density (cm3·m-3) | 根尖密度 Root tip density (No.·m-3) |
---|---|---|---|---|---|---|---|
香樟树冠下 Under crowns of C. camphora trees | 香樟细根 Fine roots of C. camphora | 腐殖质层 Humus layer (0.63) | 1 650.08 ± 48.11a | 21 968.75 ± 980.16a | 60.25 ± 5.05a | 13 176.75 ± 302.57a | 2 382 564 ± 201 647a |
0-20 | 74.69 ± 2.32c | 694.80 ±30.55d | 2.00 ± 0.22d | 473.33 ± 10.30d | 79 339 ± 6 582c | ||
20-40 | 17.84 ± 0.44f | 128.54 ± 5.75f | 0.41 ± 0.03f | 105.00 ± 2.39f | 13 910 ± 1 068e | ||
40-60 | 3.68 ± 0.11h | 116.66 ± 4.79f | 0.26 ± 0.02f | 47.63 ± 1.05g | 16 487 ± 1 350e | ||
马尾松细根 Fine roots of P. massoniana | 腐殖质层 Humus layer (0.63) | 8.49 ± 0.32g | 100.32 ± 4.01f | 0.20 ± 0.02g | 26.54 ± 0.61h | 10 616 ± 959e | |
0-20 | 14.26 ± 0.41f | 103.62 ± 4.74f | 0.30 ± 0.03f | 71.66 ± 1.65g | 1 125 ± 108h | ||
20-40 | 1.10 ± 0.07i | 2.00 ± 0.09i | 0.01 ± 0i | 4.36 ± 0.12i | 54 ± 6i | ||
40-60 | 8.42 ± 0.24g | 33.97 ± 1.24h | 0.13 ± 0.01h | 40.06 ± 1.13g | 4 071 ± 356g | ||
马尾松树冠下 Under crowns of P. massoniana trees | 香樟细根 Fine roots of C. camphora | 腐殖质层 Humus layer (0.63) | 220.09 ± 6.34b | 3519.48 ± 165.94b | 10.10 ± 1.51b | 2 332.99 ± 54.80b | 393 769 ± 37 610b |
0-20 | 22.40 ± 0.69e | 253.38 ± 10.36e | 0.70 ± 0.05e | 158.17 ± 3.46e | 33 121 ± 3 250d | ||
20-40 | 5.89 ± 0.15h | 64.45 ± 2.90g | 0.19 ± 0.02g | 42.23 ± 1.17g | 8 175 ± 732f | ||
40-60 | 0j | 0j | 0j | 0j | 0j | ||
马尾松细根 Fine roots of P. massoniana | 腐殖质层 Humus layer (0.63) | 242.00 ± 7.14b | 2 757.65 ± 125.64c | 6.86 ± 0.07c | 1 360.91 ± 32.18c | 352 726 ± 32 676b | |
0-20 | 34.90 ± 1.08d | 275.19 ± 11.55e | 0.80 ± 0.06e | 190.68 ± 4.71e | 33 519 ± 2 763d | ||
20-40 | 3.53 ± 0.09h | 44.88 ± 2.01h | 0.11 ± 0.01h | 23.26 ± 0.42h | 5 846 ± 501g | ||
40-60 | 0j | 0j | 0j | 0j | 0j |
Table 5 Density traits of fine roots in the humus and soil layers for the mixed plantation of Pinus massoniana and Cinnamomum camphora
取样位置 Sampling position | 细根类型 Fine root type | 层次 Layer (cm) | 干重密度 Dry weight density (g·m-3) | 长度密度 Length density (m·m-3) | 表面积密度 Surface area density (m2·m-3) | 体积密度 Volume density (cm3·m-3) | 根尖密度 Root tip density (No.·m-3) |
---|---|---|---|---|---|---|---|
香樟树冠下 Under crowns of C. camphora trees | 香樟细根 Fine roots of C. camphora | 腐殖质层 Humus layer (0.63) | 1 650.08 ± 48.11a | 21 968.75 ± 980.16a | 60.25 ± 5.05a | 13 176.75 ± 302.57a | 2 382 564 ± 201 647a |
0-20 | 74.69 ± 2.32c | 694.80 ±30.55d | 2.00 ± 0.22d | 473.33 ± 10.30d | 79 339 ± 6 582c | ||
20-40 | 17.84 ± 0.44f | 128.54 ± 5.75f | 0.41 ± 0.03f | 105.00 ± 2.39f | 13 910 ± 1 068e | ||
40-60 | 3.68 ± 0.11h | 116.66 ± 4.79f | 0.26 ± 0.02f | 47.63 ± 1.05g | 16 487 ± 1 350e | ||
马尾松细根 Fine roots of P. massoniana | 腐殖质层 Humus layer (0.63) | 8.49 ± 0.32g | 100.32 ± 4.01f | 0.20 ± 0.02g | 26.54 ± 0.61h | 10 616 ± 959e | |
0-20 | 14.26 ± 0.41f | 103.62 ± 4.74f | 0.30 ± 0.03f | 71.66 ± 1.65g | 1 125 ± 108h | ||
20-40 | 1.10 ± 0.07i | 2.00 ± 0.09i | 0.01 ± 0i | 4.36 ± 0.12i | 54 ± 6i | ||
40-60 | 8.42 ± 0.24g | 33.97 ± 1.24h | 0.13 ± 0.01h | 40.06 ± 1.13g | 4 071 ± 356g | ||
马尾松树冠下 Under crowns of P. massoniana trees | 香樟细根 Fine roots of C. camphora | 腐殖质层 Humus layer (0.63) | 220.09 ± 6.34b | 3519.48 ± 165.94b | 10.10 ± 1.51b | 2 332.99 ± 54.80b | 393 769 ± 37 610b |
0-20 | 22.40 ± 0.69e | 253.38 ± 10.36e | 0.70 ± 0.05e | 158.17 ± 3.46e | 33 121 ± 3 250d | ||
20-40 | 5.89 ± 0.15h | 64.45 ± 2.90g | 0.19 ± 0.02g | 42.23 ± 1.17g | 8 175 ± 732f | ||
40-60 | 0j | 0j | 0j | 0j | 0j | ||
马尾松细根 Fine roots of P. massoniana | 腐殖质层 Humus layer (0.63) | 242.00 ± 7.14b | 2 757.65 ± 125.64c | 6.86 ± 0.07c | 1 360.91 ± 32.18c | 352 726 ± 32 676b | |
0-20 | 34.90 ± 1.08d | 275.19 ± 11.55e | 0.80 ± 0.06e | 190.68 ± 4.71e | 33 519 ± 2 763d | ||
20-40 | 3.53 ± 0.09h | 44.88 ± 2.01h | 0.11 ± 0.01h | 23.26 ± 0.42h | 5 846 ± 501g | ||
40-60 | 0j | 0j | 0j | 0j | 0j |
[1] | Anderson CP (2003). Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 157, 213-228. |
[2] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern Hardwood forests. Oecologia, 125, 389-399.
DOI URL PMID |
[3] | Cahill Jr JF (1999). Fertilization effects on interactions between above- and belowground competition in an old field. Ecology, 80, 466-480. |
[4] | Caldwell MM (1987). Competition between root systems in natural communities. In: Gregory PJ, Lake JV, Rose DA eds. Root Development and Function. Cambridge University Press, Cambridge, UK. 167-185. |
[5] | Dambrine E, Pollier B, Poszwa A, Ranger J, Probst A, Viville D, Biron P, Granier A (1998). Evidence of current soil acidification in spruce stands in the Vosges Mountains, North-Eastern France. Water, Air, & Soil Pollution, 105, 43-52. |
[6] | Ding SY (丁圣彦), Song YC (宋永昌) (1998). Declining causes of Pinus massoniana in the processes of succession of evergreen broad-leaved forest. Acta Botanica Sinica (植物学报), 40, 755-760. (in Chinese with English abstract) |
[7] | Fan AW (范爱武), Liu W (刘伟), Liu BC (刘炳成) (2004). Effect of soil temperature on the growth of plant and an analysis of its mechanism. Journal of Engineering Thermophysics (工程热物理学报), 25, 124-126. (in Chinese with English abstract) |
[8] | Feng ZW (冯宗炜), Cao HF (曹洪法), Zhou XP (周修萍) (1999). Effects of Acid Deposition on Ecological Environment and Its Restoration (酸沉降对生态环境的影响及其生态恢复). China Environmental Science Press, Beijing. 300-312. (in Chinese) |
[9] | Hao YR (郝艳茹), Peng SL (彭少麟) (2005). Variation of roots and its impact factors in succession. Ecology and Environment (生态环境), 14, 762-767. (in Chinese with English abstract) |
[10] | ICP Project Coordination and Research Center of German Forestry and Forest Products (translated by Wang YH (王彦辉)) (2002). A Manual of Methodology and Criteria of Sampling, Evaluation, Monitoring and Analysis of Forest Exposed to Air Pollution (空气污染对森林影响的统一采样、评价、监测和分析的方法与标准手册). China Science and Technology Press, Beijing, 31-83. (in Chinese) |
[11] | Jastrow JD, Miller RM (1993). Neighbor influences on root morphology and mycorrhizal fungus colonization in tallgrass prairie plants. Ecology, 72, 561-569. |
[12] | Jiang WS (姜文顺), Wang KJ (王空军), Wu QP (吴秋平), Wang YJ (王永军), Dong ST (董树亭), Liu P (刘鹏), Zhang JW (张吉旺) (2008). Root distribution and competitive ability of summer corn Denghai 3719. Acta Agronomica Sinica (作物学报), 34, 1650-1655. (in Chinese with English abstract) |
[13] | Lei XE, Jia XY, Yuan SZ, Luo QR, Chen SL, Xu Y (1987). A numerical simulation of the distribution of acid precipitation in Chongqing area of China. Advances in Atmospheric Sciences, 4, 313-322. |
[14] | Li CH (李潮海), Li SL (李胜利), Wang Q (王群), Hao SP (郝四平), Han JF (韩锦峰) (2005). A study on corn root growth and activities at different soil layers with special bulk density. Scientia Agricultura Sinica (中国农业科学), 38, 1706-1711. (in Chinese with English abstract) |
[15] | Li ZY (李志勇), Wang YH (王彦辉), Yu PT (于澎涛), Zhang ZJ (张治军) (2007). A comparative study of resistance to soil acidification and growth of fine roots between pure stands of Pinus massoniana and Cinnamomum camphora. Acta Ecologica Sinica (生态学报), 27, 5245-5253. (in Chinese with English abstract) |
[16] |
McClaugherty CA, Aber JD, Melillo JM (1982). The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology, 63, 1481-1490.
DOI URL |
[17] | Newton PF, Jolliffe PA (1998). Aboveground modular component responses to intraspecific competition within density-stressed black spruce stands. Canadian Journal of Forest Research, 28, 1587-1610. |
[18] | Sánchez AM, Peco B (2004). Interference between perennial grassland and Lavandula stoechas subsp. pedunculata seedlings: a case of spatial segregation cause by competition. Acta Oecologica, 26, 39-44. |
[19] | Schaller M, Schroth G, Beer J, Jiménez F (2003). Root interactions between young Eucalyptus deglupta trees and competitive grass species in contour strips. Forest Ecology and Management, 179, 429-440. |
[20] |
Shortle WC, Smith KT (1988). Aluminum-induced calcium deficiency syndrome in declining red spruce. Science, 240, 1017-1018.
URL PMID |
[21] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton. 231-258. |
[22] | Ulrich B (1990). Waldsterben: forest decline in West Germany. Environmental Science and Technology, 24, 436-441. |
[23] | Wang QC (王庆成), Cheng YH (程云环) (2004). Response of fine roots to soil nutrient spatial heterogeneity. Chinese Journal of Applied Ecology (应用生态学报), 15, 1063-1068. (in Chinese with English abstract) |
[24] | Wang YH, Solberg S, Yu PT, Myking T, Vogt RD, Du SC (2007). Assessments of tree crown condition of two Masson pine forests in the acid rain region in south China. Forest Ecology and Management, 242, 530-540. |
[25] | Weiner J (1984). Neighborhood interference amongst Pinus rigida individuals. Journal of Ecology, 72, 183-195. |
[26] | Weiner J, Wright DB, Castro S (1997). Symmetry of below-ground competition between Kochia scoparia individuals. Oikos, 79, 85-91. |
[27] |
Wilson JB (1988). Shoot competition and root competition. Journal of Applied Ecology, 25, 279-296.
URL PMID |
[28] | Xiang YC (向言词), Peng SL (彭少麟), Peng XH (彭秀花), Cai XA (蔡锡安), Rao XQ (饶兴权) (2005). Measures of plant competition among three species of transplanted tree seedlings. Acta Phytoecologica Sinica (植物生态学报), 29, 724-729. (in Chinese with English abstract) |
[29] | Zhao DW, Larssen T, Zhang DB, Gao SD, Vogt RD, Seip HM, Lund OJ (2001). Acid deposition and acidification of soil and water in the Tie Shan Ping Area, Chongqing, China. Water, Air, & Soil Pollution, 130, 1733-1738. |
[30] | Zhao DW, Xiong JL (1988). Acidification in southwestern China. In: Rodhe H, Herrera R eds. Acidification in Tropical Countries. John Wiley & Sons Ltd., New York 317. |
[31] | Zhu JH, YU PT, Sogn TA, Wang YH, Mulder J (2008). Application of the nutrient cycling model NuCM to a forest monitoring site exposed to acidic precipitation in China. Pedosphere, 18, 681-690. |
[1] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[4] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[5] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[6] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[7] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[8] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[9] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[10] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[11] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[12] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[13] | LIU Mu-Qing, YANG Xiao-Feng, SHI Yu-Ming, LIU Yu-Wei, LI Xiao-Meng, LIAO Wan-Jin. Effects of simulated acid rain on the competitive relationship between invasive Ambrosia artemisiifolia and its co-occurring indigenous forb Bidens bipinnata [J]. Chin J Plant Ecol, 2022, 46(8): 932-940. |
[14] | WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 642-655. |
[15] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn