Chin Jour of Plan Ecolo ›› 2017, Vol. 41 ›› Issue (10): 1091-1102.doi: 10.17521/cjpe.2017.0104

• Research Articles • Previous Articles     Next Articles

Phenotypic variations in natural populations of Amygdalus pedunculata

Jiang-Qun LIU, Ming-Yu YIN, Si-Yu ZUO, Shao-Bing YANG, Tana WUYUN*()   

  1. Non-Timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China
  • Online:2017-12-24 Published:2017-10-10
  • Contact: Tana WUYUN E-mail:tanatanan@163.ccom

Abstract:

Aims Our objectives were to determine the phenotypic variations, adaption and distribution patterns in seven natural Amygdalus pedunculata populations.Methods We analyzed 14 phenotypic traits from 120 individuals in seven populations of A. pedunculata by variance analysis, correlation analysis, and cluster analysis.Important findings Results showed that there were plentiful phenotypic variation within and among populations. In particular, the phenotypic variation within population was 40.91%, higher than that among populations (35.29%), which indicated that the phenotypic variation within population was the main source of the phenotypic variation in A. pedunculata. Mean differentiation coefficient was 45.90%, and mean coefficient of variation of 14 traits was 15.59%, ranged from 9.39% to 31.98%. Mean annual temperature, latitude, length of frost-free period, longitude and altitude appear to be prominent ecological factors influencing phenotypic traits. Mean annual temperature and length of frost-free period were key indicators to phenotypic of A. pedunculata in different site conditions. According to principal component analysis and unweighted pair-group method with arithmetic means (UPGMA) cluster analysis, the seven populations of A. pedunculata could be divided into two groups. In mountainous region, A. pedunculata’s leaf blade was usually rotund to oblong, fruit nearly spherical shape with shorter fruit stem, stone was usually ovoid to spherical shape. In contrast, in sandy region, leaf blade was long oval to ovate-lanceolate, fruit and stone was usually flat ovoid with longer fruit stem. Our results provide critical information for the resource collection and breeding of this ecologically important species.

Key words: Amygdalus pedunculata, natural population, phenotypic variation, correlation analysis

Table 1

Geographical locations and main climatic conditions for the seven Amygdalus pedunculata populations sampled"

种群
Population
取样株数
Individual of
samples
经度
Longitude (E)
纬度
Latitude (N)
海拔
Altitude (m)
年平均气温
AAT (℃)
年日照时间
AAS (h)
年降水量
AP (mm)
无霜期
Frost-free day
(d)
立地类型
Site types
小纪汗乡 YYe 20 109.20° 38.45° 1 294 8.1 2 879 413.9 154 沙地 Sand
神木县 SYe 9 109.87° 38.85° 1 268 8.8 2 876 436.6 169 沙地 Sand
忽鸡沟 HJG 17 110.09° 40.75° 1 416 4.5 2 970 280.0 120 山地 Mountainous region
碎石场 SSC 11 110.10° 40.77° 1 430 4.0 3 077 300.0 116 山地 Mountainous region
喇嘛洞 LMD 6 110.30° 40.78° 1 222 3.1 2 952 362.8 118 山地 Mountainous region
前店 QD 9 110.08° 40.77° 1 516 3.6 3 012 330.8 120 山地 Mountainous region
小井沟 XJG 48 111.83° 40.98° 1 386 3.7 2 863 489.3 95 山地 Mountainous region

Table 2

Variance analysis and phenotypic differentiation coefficients among the Amygdalus pedunculata populations sampled"

性状
Trait
F
F
value
方差分量百分比
Proportion of variance components (%)
表型分化系数
Phenotypic
differentiation
coefficients (%)
种群间
Among populations
种群内
Within population
种群间
Among populations
种群内
Within populations
随机误差
Random error
叶长 LL (mm) 4.666** 6.281** 49.00 26.30 24.70 65.07
叶宽 LW (mm) 29.722** 5.621** 56.45 18.41 25.13 75.41
叶柄长 PL (mm) 1.720 3.357** 10.24 29.41 60.35 25.83
叶形指数 LSI 40.295** 9.621** 66.10 20.06 13.84 76.72
果纵径 FLD (mm) 3.615** 13.079** 37.08 44.79 18.13 45.29
果横径 FTD (mm) 6.278** 12.951** 24.19 56.28 19.53 30.06
果侧径 FSD (mm) 12.829** 14.658** 27.48 54.87 17.64 33.37
果形指数 FSI 16.351** 11.338** 42.86 37.14 20.00 53.58
果柄长 FSL (mm) 13.582** 9.379** 34.03 41.60 24.37 45.00
肉厚 PT (mm) 10.872** 5.169** 30.20 32.18 37.62 48.41
核纵径 NLD (mm) 1.576 18.788** 36.74 51.42 11.84 41.67
核横径 NTD (mm) 7.203** 9.344** 24.41 55.17 20.42 30.67
核侧径 NSD (mm) 6.471** 9.413** 16.62 60.42 22.96 21.57
核形指数 NSI 7.427** 5.599** 44.64 44.64 10.71 50.00
平均值 Mean value 35.72 40.91 23.37 45.90

Table 3

Phenotypic traits and multiple comparison of the seven Amygdalus pedunculata populations (mean ± SD)"

性状 Trait 种群 Population
YYe SYe HJG SSC LMD QD XJG
LL (mm) 22.91 ± 4.43c 24.65 ± 5.84d 20.89 ± 3.89ab 24.15 ± 3.47cd 21.23 ± 1.99b 19.58 ± 2.28a 21.14 ± 3.172b
LW (mm) 7.70 ± 1.97a 8.19 ± 1.73a 11.41 ± 2.34b 13.09 ± 1.95c 14.63 ± 2.34d 13.75 ± 1.90c 12.15 ± 2.49b
PL (mm) 6.19 ± 1.50abc 6.96 ± 1.52d 5.95 ± 1.28ab 6.54 ± 1.31cd 5.77 ± 1.67a 6.38 ± 1.52bc 6.42 ± 1.31bc
LSI 3.11 ± 0.85c 3.06 ± 0.65c 1.86 ± 0.30b 1.86 ± 0.26b 1.48 ± 0.21a 1.44 ± 0.16a 1.80 ± 0.38b
FLD (mm) 12.81 ± 1.22b 13.35 ± 1.29c 11.79 ± 1.42a 12.62 ± 1.43b 13.59 ± 1.32c 12.14 ± 0.97a 12.74 ± 1.09b
FTD (mm) 10.11 ± 0.89a 11.32 ± 1.37c 9.98 ± 1.56a 11.00 ± 1.00bc 12.55 ± 1.31d 10.57 ± 1.03b 11.06 ± 1.29c
FSD (mm) 9.37 ± 0.85a 10.07 ± 1.00b 10.51 ± 1.47bc 11.41 ± 0.90d 12.49 ± 1.29e 10.67 ± 1.07c 11.48 ± 1.31d
FSI 1.38 ± 0.16b 1.34 ± 0.20b 1.13 ± 0.14a 1.11 ± 0.09a 1.09 ± 0.09a 1.14 ± 0.09a 1.12 ± 0.12a
FSL (mm) 6.19 ± 1.21cd 6.46 ± 1.55d 5.20 ± 1.66b 5.80 ± 1.92c 4.30 ± 1.11a 4.05 ± 1.17a 4.01 ± 1.21a
PT (mm) 1.03 ± 0.35bc 0.94 ± 0.10ab 0.86 ± 0.38a 1.16 ± 0.46c 1.15 ± 0.41c 1.46 ± 0.46d 1.40 ± 0.41d
NLD (mm) 11.88 ± 1.26b 11.74 ± 0.91b 11.03 ± 1.22a 11.46 ± 1.38a 11.13 ± 1.08a 11.00 ± 1.16a 11.64 ± 1.13b
NTD (mm) 8.48 ± 1.12a 8.98 ± 0.94b 9.38 ± 0.97cd 9.70 ± 0.72de 9.55 ± 0.56de 9.04 ± 0.95bc 9.79 ± 0.94e
NSD (mm) 7.47 ± 0.64a 7.72 ± 0.89ab 8.22 ± 1.07c 8.70 ± 0.73d 8.67 ± 0.48d 7.85 ± 0.74b 8.30 ± 0.78c
NSI 1.60 ± 0.16a 1.53 ± 0.12a 1.37 ± 0.34bc 1.32 ± 0.12ab 1.28 ± 0.11a 1.41 ± 0.13c 1.41 ± 0.17c

Table 4

Variance components of phenotypic traits in Amygdalus pedunculata populations"

性状 Trait 种群 Population (%) 平均值
Mean value (%)
YYe SYe HJG SSC LMD QD XJG
LL 19.34 23.71 18.64 14.38 9.39 11.64 14.97 16.01
LW 25.53 21.16 20.52 14.92 15.99 13.85 20.53 18.93
PL 24.19 21.82 21.59 20.00 28.90 23.85 20.46 22.97
LSI 27.26 21.21 16.08 13.77 14.02 11.39 21.24 17.85
FLD 9.92 9.67 12.04 11.34 9.71 7.98 8.58 9.89
FTD 8.76 12.06 15.63 9.07 10.45 9.76 11.99 11.10
FSD 9.07 9.93 13.98 7.89 10.37 10.03 11.43 10.39
FSL 19.57 24.02 31.99 33.15 25.80 28.75 30.13 27.63
PT 33.74 10.41 43.75 39.65 35.41 31.45 29.44 31.98
FSI 11.76 14.61 12.69 7.92 8.57 7.51 10.78 10.55
NLD 10.59 7.77 11.08 12.02 9.67 10.50 9.73 10.19
NTD 13.26 10.49 10.30 7.46 5.86 10.56 9.61 9.65
NSD 8.55 11.51 12.97 8.43 5.55 9.37 9.36 9.39
NSI 10.25 7.80 24.96 9.36 8.52 9.41 11.86 11.74
Mean value 16.56 14.73 19.02 14.95 14.16 14.00 15.72 15.59

Table 5

Analysis of correlation between phenotypic traits and geo-ecological factors in Amygdalus pedunculata populations"

性状
Trait
经度
Longitude (E)
纬度
Latitude (N)
海拔
Altitude (m)
年平均气温
AAT (℃)
年日照时间
AAS (h)
年降水量
AP (mm)
无霜期
Frost-free season (d)
LL -0.344 -0.593 -0.439 0.661 -0.095 0.189 0.606
LW 0.455 0.910** 0.356 -0.958** 0.625 -0.426 -0.797*
PL 0.022 -0.365 0.134 0.513 -0.123 0.377 0.416
LSI -0.521 -0.959** -0.478 0.982** -0.573 0.436 0.862*
FLD 0.001 -0.345 -0.851* 0.269 -0.399 0.537 0.336
FTD 0.292 0.229 -0.566 -0.281 -0.026 0.223 -0.123
FSD 0.594 0.779* -0.075 -0.810* 0.336 -0.118 -0.707
FSL -0.676 -0.787* -0.347 0.842* -0.119 -0.006 0.813*
PT 0.555 0.493 0.471 -0.566 0.149 0.243 -0.594
FSI -0.600 -0.988** -0.419 0.971** -0.586 0.430 0.899**
NLD -0.086 -0.729 -0.436 0.732 -0.610 0.721 0.494
NTD 0.778* 0.845* 0.187 -0.755* 0.337 -0.116 -0.801*
NSD 0.486 0.788* 0.043 -0.772* 0.531 -0.354 -0.706
NSI -0.417 -0.893** -0.218 0.889** -0.656 0.529 0.739
Total 5.827 9.701 5.019 10.003 5.165 4.705 8.894

Table 6

Principal component analysis of phenotypic traits of Amygdalus pedunculata populations"

性状 Trait 主成分 Main component
PC-1 PC-2 PC-3 PC-4
LL 0.604 0.685 -0.266 0.263
LW -0.976 -0.005 0.057 0.023
PL 0.499 0.289 0.271 0.689
LSI 0.974 0.198 -0.032 -0.060
FLD 0.113 0.854 0.321 -0.393
FTD -0.453 0.773 0.250 -0.313
FSD -0.896 0.433 0.042 -0.064
FSL 0.826 0.293 -0.430 0.086
PT -0.500 -0.150 0.775 0.289
FSI 0.972 0.030 0.134 -0.184
NLD 0.751 0.410 0.244 0.174
NTD -0.794 0.334 -0.160 0.376
NSD -0.825 0.416 -0.326 0.134
NSI 0.937 -0.171 0.277 -0.049
特征值 Eigen value 8.166 2.699 1.387 1.120
贡献率
Contributive
percentage (%)
58.329 19.279 9.909 8.001
累计贡献率
Total percentage (%)
58.329 77.608 87.517 95.518

Fig. 1

The relationship among different Amygdalus pedunculata populations based on PC-1 and PC-2. Table 1 indicated the numbers of populations."

Fig. 2

Cluster analysis based on the phenotypic traits of Amygdalus pedunculata populations. Table 1 indicated the numbers of populations."

Fig. 3

The phenotype difference of leaves in Amygdalus pedunculata between different stands. A, Mountainous region. B, Sand. The size of the grid was 1 cm × 1 cm."

Fig. 4

The phenotype difference of fruits in Amygdalus pedunculata between different stands. A, Fruit spur from mountainous region. B, Fruit from mountainous region. C, Pulp from mountainous region. D, Fruit spur from sand. E, Fruit from sand. F, Pulp from sand. The size of the grid was 1 cm × 1 cm."

Table 7

The influence of different stands on Amygdalus pedunculata populations"

性状 Trait 山地 Mountainous region 沙地 Sand t检验
t-test
分布范围
Rangeability
均值
Mean value
标准偏差
Standard deviation
分布范围
Rangeability
均值
Mean value
标准偏差
Standard deviation
LL (mm) 9.21-33.19 20.75 4.04 12.16-38.91 23.45 4.96 **
LW (mm) 5.21-19.52 12.01 2.61 4.23-13.95 7.85 1.90 **
PL (mm) 2.68-12.22 6.28 1.43 2.87-10.44 6.44 1.57 -
LSI 0.84-3.23 1.77 0.35 1.96-5.93 3.08 0.72 **
FLD (mm) 7.14-19.22 12.65 1.45 9.75-16.21 12.98 1.26 *
FTD (mm) 5.58-14.77 10.68 1.39 8.30-14.65 10.49 1.19 -
FSD (mm) 5.92-15.73 11.20 1.33 7.24-12.06 9.59 0.95 **
FSL (mm) 1.16-10.15 4.47 1.54 3.08-10.07 6.27 1.32 **
PT (mm) 0.15-2.99 1.23 0.47 0.38-2.21 1.00 0.30 **
FSI 0.75-1.66 1.14 0.14 0.94-1.82 1.36 0.17 **
NLD (mm) 7.28-18.15 11.61 1.44 9.89-15.27 11.84 1.16 -
NTD (mm) 7.04-13.45 9.67 0.97 5.82-10.97 8.64 1.09 **
NSD (mm) 2.48-11.93 8.27 0.85 6.09-9.64 7.54 0.73 **
NSI 0.81-4.06 1.42 0.25 1.23-2.01 1.58 0.15 **

Table 8

Comparisons of morphological characteristics of Amygdalus pedunculata populations between different sites"

山地 Mountainous region 沙地 Sand
叶片形态
Leaf morphology
叶片近圆形至长圆形, 长9.21-33.19 mm, 宽5.21-19.52 mm; 叶柄长2.68-12.22 mm。
Blade rotund to oblong, 9.21-33.19 mm long, 5.21-19.52 mm wide; petioles 2.68-12.22 mm long.
叶长椭圆形或卵状披针形, 长12.16-38.91 mm, 宽4.23-13.95 mm; 叶柄长2.87-10.44 mm。
Blade long oval to ovate-lanceolate, 12.16-38.91 mm long, 4.23- 13.95 mm wide; petioles 2.87-10.44 mm long.
果实形态
Fruit morphology
果实近球形, 直径5.92-15.73 mm; 果柄较短, 长1.16-10.15 mm; 果肉较厚, 0.15-2.99 mm。
Fruit subglobose, 5.92-15.73 mm in diameter; fruit stem short, 1.16-10.15 mm; pulp thick, 0.15-2.99 mm.
果实卵球形, 直径7.24-12.06 mm; 果柄较长, 长3.08-10.07 mm; 果肉较薄, 0.38-2.21 mm。
Fruit ovoid, 7.24-12.06 mm in diameter; fruit stem long, 3.08-10.07 mm; pulp thin, 0.38-2.21 mm.
核形态 Stone form 核宽卵形至近球形, 直径2.48-11.93 mm。
Stone wide oval to subglobose, 2.48-11.93 mm in diameter.
核宽卵形, 直径6.09-9.64 mm。
Stone wide oval to subglobose, 6.09-9.64 mm in diameter.

Table 9

Comparisons on geographical and ecological factors between different sites"

地理生态因子
Geo-ecological factor
山地 Mountainous region 沙地 Sand t检验
t-test
均值 Mean value 标准偏差 Standard deviation 均值 Mean value 标准偏差 Standard deviation
经度 Longitude (E) 110.48 0.76 109.535 0.47 -
纬度 Latitude (N) 40.81 0.10 38.65 0.28 *
海拔 Altitude (m) 1 394.00 107.60 1 281.00 18.38 -
年平均气温 AAT (℃) 3.78 0.52 8.45 0.49 **
年日照时间 AAS (h) 2 974.80 78.85 2 877.50 2.12 -
年降水量 AP (mm) 352.58 82.62 425.25 16.05 -
无霜期 Frost-free season (d) 113.80 10.64 161.50 10.60 **
[1] Deng LL, Sun Q, Xu YL, Zhou L, Xu Y, Li DL, Luo Y, Chen S, Li GQ, Cai NH (2016). Compare on the needle phenotypic variations between the different type of trunk populations of Pinus yunnanensis.Journal of Southwest forestry University, 36(3), 30-37. (in Chinese with English abstract)[邓丽丽, 孙琪, 许玉兰, 周丽, 徐杨, 李德龙, 罗元, 陈诗, 李根前, 蔡年辉 (2016). 云南松不同茎干类型群体针叶性状表型多样性比较. 西南林业大学学报, 36(3), 30-37.]
doi: 10.11929/j.issn.2095-1914.2016.03.006
[2] Du RQ (2009).Biostatistics. Higher Education Press, Beijing. (in Chinese)[杜荣骞 (2009). 生物统计学. 高等教育出版社, 北京.]
[3] Feng QH, Shi ZM, Xu ZJR, Miao N, Tang JC, Liu XL, Zhang L (2017). Phenotypic variations in cones and seeds of natural Cupressus chengiana populations in China. Chinese Journal of Applied Ecology, 28, 748-756. (in Chinese with English abstract)[冯秋红, 史作民, 徐峥静茹, 缪宁, 唐敬超, 刘兴良, 张雷 (2017). 岷江柏天然种群种实表型变异特征. 应用生态学报, 28, 748-756.]
[4] García D, Zamora R, Gómez JM (2000). Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe.Journal of Ecology, 88, 435-446.
[5] Ge S, Wang MX, Chen YW (1988). An analysis of population genetic structure of masson pine by isozyme technique.Scientia Silvae Sinicae, 24, 399-410. (in Chinese with English abstract)[葛颂, 王明庥, 陈岳武 (1988). 用同工酶研究马尾松群体的遗传结构. 林业科学, 24, 399-410.]
[6] Gil L, Climent J, Nanos N, Mutke S, Ortiz I, Schiller G (2002). Cone morphology variation in Pinus canariensis Sm. Plant Systematics and Evolution, 235, 35-51.
[7] Gu WC (2004).Statistical Genetics. Science Press, Beijing. (in Chinese)[顾万春 (2004).统计遗传学.科学出版社, 北京.]
[8] Gu YJ, Luo JX, Wu YW, Cao XJ (2009). Phenotypic diversity in natural populations of Picea balfouriana in Sichuan, China.Chinese Journal of Plant Ecology, 33, 291-301. (in Chinese with English abstract)[辜云杰, 罗建勋, 吴远伟, 曾小军 (2009). 川西云杉天然种群表型多样性. 植物生态学报, 33, 291-301.]
[9] Guo CH, Luo M, Ma YH, Ma XW (2005). Study on the salt tolerance of three woody ground cover plants.Journal of Northwest A & F University (Natural Sciences Edition), 33(12), 125-129. (in Chinese with English abstract)[郭春会, 罗梦, 马玉华, 马小卫 (2005). 沙地濒危植物长柄扁桃特性研究进展. 西北农林科技大学学报(自然科学版), 33(12), 125-129.]
[10] Guo GG, Feng B, Ma BL, Jing ZB, Zhang YL, Guo CH (2013a). Studies on drought resistance of different regional Amygdalus pedunculata Pall.Plant Science Journal, 31, 360-369. (in Chinese with English abstract)[郭改改, 封斌, 麻保林, 井赵斌, 张应龙, 郭春会 (2013a). 不同区域长柄扁桃抗旱性的研究. 植物科学学报, 31, 360-369.]
[11] Guo GG, Wei Y, Feng B, Ma BL, Zhang YL, Guo CH (2013b). Gold-resistance of Amygdalus pedunculata Pall from different provenances in China.Journal of Northwest Forestry University, 28(4), 11-15. (in Chinese with English abstract)[郭改改, 魏钰, 封斌, 麻保林, 张应龙, 郭春会 (2013b). 我国几个不同地域长梗扁桃苗木的抗寒性研究. 西北林学院学报, 28(4), 11-15.]
[12] Hamrick JL, Godt MJW (1990). Allozyme diversity in plant species. In: Brown HD, Clegg MT, Kahler AL, Weir BS eds. Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, USA. 43-63.
[13] Huang DJ, Feng G, Liu JH, Wang ZB (2016). Study on samara phenotypic variation of Acer palmatum. Journal of Heilongjiang Bayi Agricultural University, 28(5), 36-41. (in Chinese with English abstract)[黄东静, 冯刚, 刘继虎, 万志兵 (2016). 鸡爪槭翅果表型性状变异. 黑龙江八一农垦大学学报, 28(5), 36-41.]
[14] Hou GF, Li C, Chen B, Shen YH, Qian ZJ, Zhang YL (2014). Composition analysis of Amygdalus pedunculata Pall seed from different regions. Acta Botanica Boreali-Occidentalia Sinica, 34, 1843-1848. (in Chinese with English abstract)[侯国峰, 李聪, 陈邦, 申烨华, 钱振杰, 张应龙 (2014). 不同产地长柄扁桃种仁成分分析.西北植物学报, 34, 1843-1848.]
[15] Ji ZL, Qian AD (1981). Amygdalus pedunculata Pall and A. mongolia Maxim natural distribution area in China. China Fruits, (2), 38-39. (in Chinese)[姬钟亮, 钱安东 (1981). 长柄扁桃和蒙古扁桃在我国自然分布区的调查. 中国果树, (2), 38-39.]
[16] Jiang B, Guo CH, Mei LX, Shen YH, Wang YJ (2008). Studies on cold-resistance of sand Amygdalus pedunculata Pall. Journal of Northwest A & F University (Natural Sciences Edition), 36(5), 92-96. (in Chinese with English abstract)[蒋宝, 郭春会, 梅立新, 申烨华, 王亚俊 (2008). 沙地植物长柄扁桃抗寒性的研究. 西北农林科技大学学报(自然科学版), 36(5), 92-96.
[17] Jiang XB, Gong BC, Liu QZ, Chen X, Wu KY, Deng QE, Tang D (2014). Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut.Acta Horticulturae Sinica, 41, 641-652. (in Chinese with English abstract)[江锡兵, 龚榜初, 刘庆忠, 陈新, 吴开云, 邓全恩, 汤丹 (2014). 中国板栗地方品种重要农艺性状的表型多样性. 园艺学报, 41, 641-652.]
[18] Jiang ZM, Wuyun TN, Wang S, Zhu XC (2016). Amino acid composition and nutritional quality evaluation of wild Amygdalus pedunculatus Pall. kernels from different growing regions. Food Science, 37(4), 77-82. (in Chinese with English abstract)[姜仲茂, 乌云塔娜, 王森, 朱绪春 (2016). 不同产地野生长柄扁桃仁氨基酸组成及营养价值评价. 食品科学, 37(4), 77-82.]
[19] Li B, Gu WC, Lu BM (2002). A study on phenotypic diversity of seeds and cones characteristics inPinus bungeana. Biodiversity Science, 10, 181-188. (in Chinese with English abstract)[李斌, 顾万春, 卢宝明 (2002). 白皮松天然群体种实性状表型多样性研究. 生物多样性, 10, 181-188.]
[20] Li B, Li Y, Xu NX, Zhang C, Shen YH, Zhang YL (2010). Preparation of activated carbon from amygdalus shell with zinc chloride. Journal of Northwest University (Natural Science Edition), 40, 806-810. (in Chinese with English abstract)[李冰, 李洋, 许宁侠, 张弛, 申烨华, 张应龙 (2010). 氯化锌活化法制备长柄扁桃壳活性炭. 西北大学学报(自然科学版), 40, 806-810.]
[21] Li C, Li GP, Chen Q, Bai B, Shen YH, Zhang YL (2010). Fatty acid composition analysis of the seed oil ofAmygdalus pedunculatus Pall. China Oils and Fats, 35(4), 77-79. (in Chinese with English abstract)[李聪, 李国平, 陈俏, 白斌, 申烨华, 张应龙 (2010). 长柄扁桃油脂肪酸成分分析. 中国油脂, 35(4), 77-79.]
[22] Li DW, Dang KL, Wen ZM (2004). Research of rare and endangered plants of seed plant flora in Loess Plateau.Acta Botanica Boreali-Occidentalia Sinica, 24, 2321-2328. (in Chinese with English abstract)[李登武, 党坤良, 温仲明 (2004). 黄土高原地区种子植物区系中的珍稀濒危植物研究. 西北植物学报, 24, 2321-2328.]
[23] Li W, Lin FR, Zheng YQ, Li B (2013). Phenotypic diversity of pods and seeds in natural populations of Gleditsia sinensis in southern China.Chinese Journal of Plant Ecology, 37, 61-69. (in Chinese with English abstract)[李伟, 林富荣, 郑勇奇, 李斌 (2013). 皂荚南方天然群体种实表型多样性. 植物生态学报, 37, 61-69.]
[24] Lin L, Wang JH, Luo J, Chen S (2014). Phenotypic diversity of seed and fruit traits in natural populations of Sophora moorcroftiana. Scientia Silvae Sinicae, 50(4), 137-143. (in Chinese with English abstract)[林玲, 王军辉, 罗建, 陈帅 (2014). 砂生槐天然群体种实性状的表型多样性. 林业科学, 50(4), 137-143.]
[25] Liu MJ (1998).Wild Fruits of China. China Agricultural Press, Beijing. 1-8. (in Chinese)[刘孟军 (1998).中国野生果树. 中国农业出版社, 北京. 1-8.]
[26] Liu YH, Gao GQ, Cui W, Cheng CH, Yang PH, Fan JF (2010). Study on phenotypic diversity of seeds and cones characteristics inPinus tabuleaformis Carr. Seed, 29(9), 44-48. (in Chinese with English abstract)[刘永红, 高桂琴, 崔嵬, 程春红, 杨培华, 樊军锋 (2010). 油松天然群体种实性状表型多样性分析. 种子, 29(9), 44-48.]
[27] Luo JX, Gu WC (2005). Study on phenotypic diversity of natural population inPicea asperata. Scientia Silvae Sinicae, 41(2), 66-73. (in Chinese with English abstract)[罗建勋, 顾万春 (2005). 云杉天然群体表型多样性研究. 林业科学, 41(2), 66-73.]
[28] Meng C, Zheng X, Ji ZF, Lin LL, Zhang CQ, Wang YL (2013). Phenotypic diversity of natural populations of Acer grosseri in Shanxi. Acta Botanica Boreali-Occidentalia Sinica, 33, 2232-2240. (in Chinese with English abstract)[孟超, 郑昕, 姬志峰, 林丽丽, 张翠琴, 王祎玲 (2013). 山西葛萝槭天然种群表型多样性研究. 西北植物学报, 33, 2232-2240.]
[29] Ming J, Gu WC (2006). Phenotypic variation of Syringa oblate Lindl. Forest Research, 19, 199-204. (in Chinese with English abstract)[明军, 顾万春 (2006). 紫丁香表型多样性研究. 林业科学研究, 19, 199-204.]
[30] Pigliucci M, Murren CJ, Schlichting CD (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362-2367.
[31] Su GX, Yao YQ (1983). Wild almond resources of China. Study on Wild Plant, (2), 7-11. (in Chinese)[苏贵兴, 姚玉卿 (1983). 我国的野生扁桃资源. 野生植物研究, (2), 7-11.]
[32] Su YX, Zhang X, Wang WL, Zhao YY, Wang YH, Shen SK (2017). Phenotypic diversity of Rhododendron rubiginosum populations at different altitudes. Acta Botanica Boreali-Occidentalia Sinica, 37, 356-362. (in Chinese with English abstract)[苏应雄, 张雪, 王文礼, 赵云勇, 王跃华, 申仕康 (2017). 红棕杜鹃不同海拔种群的表型多样性研究. 西北植物学报, 37, 356-362.]
[33] Via S (1993). Adaptive phenotypic plasticity: Target or by- product of selection in a variable environment?The American Naturalist, 142, 352-365.
[34] Wang W, Chu JM, Tang XQ, Li YF, Xu XQ (2014). Morphological diversity and correlativity analysis of nut traits of Amygdalus pedunculata. Forest Research, 27, 854-859. (in Chinese with English abstract)[王伟, 褚建民, 唐晓倩, 李毅夫, 许新桥 (2014). 长柄扁桃坚果表型多样性及其相关关系研究. 林业科学研究, 27, 854-859.]
[35] Wang YL, Li YH, Wang Y, Zhu Q, Wang L (2012). Analysis of nutritional components of three kind of Amygdalus plant. Guangdong Agricultural Sciences, 39(7), 127-129. (in Chinese with English abstract)[王娅丽, 李永华, 王钰, 朱强, 王丽 (2012). 3种扁桃属植物营养成分分析. 广东农业科学, 39(7), 127-129.]
[36] Wang ZH, Zhang EJ (2001).Chinese Fruit Tree, Amygdalus.China Forestry Publishing House, Beijing. 80-110. (in Chinese)[汪祖华, 庄恩及 (2001). 中国果树志, 桃卷. 中国林业出版社, 北京. 80-110.]
[37] Xu JJ, Su YQ, Zhang Q, Guo CH, Xue G, Yuquan XYL (2011). Process of the extraction ofAmygdalus pedunculata pall. oil. Journal of Northwest Forestry University, 26(4), 184-187. (in Chinese with English abstract)[徐金娟, 苏印泉, 张强, 郭春会, 薛刚, 玉泉幸一郎 (2011). 溶剂法提取长柄扁桃油的工艺研究. 西北林学院学报, 26(4), 184-187.]
[38] Xu L (2014). Study on Preparation of Lube Base Oil from the Desert Amygdalus pedunculata Pall. Oil. Master degree dissertation, Northwest University, Xi’an. (in Chinese with English abstract)[许龙 (2014). 沙生植物长柄扁桃油改性制备润滑油基础油的研究. 硕士学位论文, 西北大学, 西安.]
[39] Xu XQ, Wang W, Chu JM (2015). Variation analysis on kernel oil content and its fatty acid composition in 31 superiorAmygdalus pedunculata individuals form Mu Us Desert. Scientia Silvae Sinicae, 51(7), 142-147. (in Chinese with English abstract)[许新桥, 王伟, 褚建民 (2015). 毛乌素沙地长柄扁桃31个优良单株坚果核仁脂肪酸组成变异分析. 林业科学, 51(7), 142-147.]
[40] Xu Y, Zhou L, Cai NH, Deng LL, Wang DW, Duan AA, He CZ, Xu YL (2016). Needle phenotypic variation among populations ofPinus yunnanensis at different altitude. Journal of Yunnan Agricultural University (Natural Science), 31(1), 109-114. (in Chinese with English abstract)[徐杨, 周丽, 蔡年辉, 邓丽丽, 王大伟, 段安安, 何承忠, 许玉兰 (2016). 云南松不同海拔群体的针叶性状表型多样性研究. 云南农业大学学报: 自然科学, 31(1), 109-114.]
[41] Xu YJ, Han HB, Wang H, Chen LN, Ma QG, Pei D (2016). Phenotypic and genetic diversities of nuts of walnut (Juglans regia) populations originated from seedlings in Daba Mountains. Scientia Silvae Sinicae, 52(5), 111-117. (in Chinese with English abstract)[徐永杰, 韩华柏, 王滑, 陈凌娜, 马庆国, 裴东 (2016). 大巴山区核桃实生居群的坚果表型和遗传多样性. 林业科学, 52(5), 111-117.]
[42] Yin MY, Jiang ZM, Zhu XC, Bao WQ, Zhao H, Wuyun T (2016). High-level phenotypic variations in populations of siberian apricot (Armeniaca sibirica) in Nei Mongol. Chinese Journal of Plant Ecology, 40, 1090-1099. (in Chinese with English abstract)[尹明宇, 姜仲茂, 朱绪春, 包文泉, 赵罕, 乌云塔娜 (2016). 内蒙古山杏种群表型变异. 植物生态学报, 40, 1090-1099.]
[43] Zhang DH (2009).Descriptors and Data Standard for Almond (Amygdalus).China Agriculture Press, Beijing. (in Chinese)[张大海 (2009). 扁桃种质资源描述规范和数据标准. 中国农业出版社, 北京.]
[44] Zhang P, Shen YH, Guo CH, Kong XH, He XW, Wang JW (2004). HPLC determination of α-tocopherol in almond kernel.Food Science, 25(1), 142-144. (in Chinese with English abstract)[张萍, 申烨华, 郭春会, 孔祥宏, 何学文, 王继武 (2004). 扁桃种仁中维生素E的高效液相色谱法测定. 食品科学, 25(1), 142-144.]
[45] Zhang Y, Cao YF, Huo HL, Tian LM, Dong XG, Qi D, Zhang XB (2016). Research on diversity of pear germplasm resources based on flowers phenotype traits.Acta Horticulturae Sinica, 43, 1245-1256. (in Chinese with English abstract)[张莹, 曹玉芬, 霍宏亮, 田路明, 董星光, 齐丹, 张小双 (2016). 基于花表型性状的梨种质资源多样性研究. 园艺学报, 43, 1245-1256.]
[46] Zhao ZY (1992).Rare and Endangered Plants in Inner Mongolia. China Agriculture Science and Technology Press,Beijing. (in Chinese)[赵一之 (1992).内蒙古珍稀濒危植物图谱. 中国农业科技出版社, 北京.]
[47] Zheng X, Meng C, Ji ZF, Wang YL (2013). Phenotypic diversity of leaves morphologic characteristics of Ulmus lamellosa natural populations in Shanxi. Acta Horticulturae Sinica, 40, 1951-1960. (in Chinese with English abstract)[郑昕, 孟超, 姬志峰, 王祎玲 (2013). 脱皮榆山西天然居群叶性状表型多样性研究. 园艺学报, 40, 1951-1960.]
[48] Zuo SY, Wuyun T, Zhu XC, Du XL (2015). Diversity of leaves phenotype traits of endangered and wild species Amygdalus pcdunculata. Journal of Central South University of Forestry & Technology, 35(11), 60-67. (in Chinese with English abstract)[左丝雨, 乌云塔娜, 朱绪春, 杜笑林 (2015). 濒危野生长柄扁桃叶片表型性状的多样性. 中南林业科技大学学报, 35(11), 60-67.]
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yuan CAO yun YANG Hua-Quan XU Yang LIU Dan-Yang WANG. The use of PCR method to find the plasmid backbone fragments in the products of hiTAIL-PCR[J]. , 2018, 53(1): 0 .
[2] . Research Progress in Plant Cuticles[J]. , 2018, 53(2): 0 .
[3] Xiangdong Luo, Liangfang Dai, Yong Wan, Biaolin Hu, Fosheng Li, Xia Li, Jiankun Xie. Cytological Studies of Male Gametogenesis and Development in the Reciprocal Interspecific Hybrid F1 of Dongxiang Wild Rice (Oryza rufipogon) and Oryza sativa[J]. , 2011, 46(4): 407 -412 .
[4] Sun Lulong, Geng Qingwei, Xing Hao, Du Yuanpeng, Zhai Heng. Effects of Buffered Cooling in Root Zone on Frost Injury in Grape Leaf[J]. Chin Bull Bot, 2017, 52(3): 290 -296 .
[5] Kang Juqing, Sun Tianshu, Zhang Huiting, Shi Yihao. Quantitative Trait Loci Mapping Platform of Natural Populations of Arabidopsis thaliana along the Yangtze River in China[J]. Chin Bull Bot, 2016, 51(5): 659 -666 .
[6] Xu Congcong, Cui Hongxia, Shi Lei, Xia Fei, Yin Zhaoyin, Zhang Deshan. Response of Flowering Phenology of Viburnum to Abnormal Meteorological Events[J]. Chin Bull Bot, 2017, 52(3): 297 -306 .
[7] Zhenghe Lin, Qiusheng Zhong, Changsong Chen, Zhihui Chen, Xiaomei You. Relationship Between Volatile Constituents and β-glucosidase of Different Tea Varieties[J]. Bulletin of Botany, 2015, 50(6): 713 -720 .
[8] . Effects of Grape F1 Generation Hybrid Plants on photosystem activity Under Alkaline Salt Tolerance(Revised Manuscript)[J]. , 2018, 53(2): 0 .
[9] Ye NuoNan. Community structure analysis of public welfare forest based on multivariate regression trees[J]. , 2018, 53(2): 0 .
[10] Zhuang Shuhong, Wang Keming, Chen Lixue. Preliminary Study on the Ecological Characteristics in Sunny ND shady Slopes of Seminatural Vegetation of Laoyangfen in Kunyu Mountain[J]. Chinese Journal of Plant Ecology, 1999, 23(3): 238 -249 .