Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (11): 1168-1176.doi: 10.17521/cjpe.2017.0220

• Research Articles • Previous Articles     Next Articles

Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands

Tian WANG1,2, Shan XU3, Meng-Ying ZHAO1,2, He LI1,2, Dan KOU1,2, Jing-Yun FANG1, Hui-Feng HU1,*()   

  1. 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

    2University of Chinese Academy of Sciences, Beijing 100049, China
    and
    3South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
  • Received:2017-08-16 Accepted:2017-11-14 Online:2017-11-10 Published:2017-11-10
  • Contact: Hui-Feng HU E-mail:huifhu@ibcas.ac.cn

Abstract:

Aims Soil aggregate is an important component of soil structure, playing an important role in the physical and biological protection mechanism of soil organic carbon (SOC) through isolating SOC from microorganisms. As far as we know, there are few studies, however, on exploring the spatial distribution of soil aggregate at the regional scale. Our objective was to investigate the mass allocation and stability of soil aggregate in different types of Nei Mongol grasslands.
Methods We have established 78 sites with a size of 10 m × 10 m across the transect of Nei Mongol grasslands and collected soil samples from different soil depth up to 1 m. We used wet sieving method to separate different sizes of aggregate partition and used mean mass diameter (MMD) and geometric mean diameter (GMD) in order to evaluate the stability of soil aggregate. The two-way ANOVA was used to test the difference of mass percentage and stability of soil aggregate in different grassland types and soil depths. In addition, a linear regression analysis was used to analyze the correlations of mass percentage and stability of soil aggregate with both mean annual precipitation (MAP) and mean annual temperature (MAT).
Important findings The results showed that the mass percentages of soil aggregate were highest in meadow steppe, while almost equal in typical steppe and desert steppe. However, no significant patterns were found along the soil depth. The mass percentage of soil aggregate fractions were positively correlated with MAP in all soil layers, but negatively correlated with MAT except the layer of 70-100 cm. For the stability of soil aggregate, at 0-10 and 10-20 cm, MMD and GMD of meadow steppe were significantly greater than those of typical and desert steppes, whereas no significant differences among three grassland types were found for other soil layers. Besides, MMD and GMD in meadow steppe and typical steppe gradually decreased along the soil depth.

Key words: Nei Mongol grasslands, mass percentage of soil aggregate, soil aggregate stability, soil depth, climate factors

Table 1

The basic information of the three types of grassland"

草原类型
Grassland type
GSP平均值(范围)1)
Mean of GSP (range) 1) (mm)
GST平均值(范围) 1)
Mean of GST a(range) 1) (℃)
氮:磷平均值(范围) 2)
Mean of N:P (range) 2)
pH平均值(范围) 3)
Mean of pH (range) 3)
优势种4)
Dominant species4)
草甸草原
Meadow steppe
306 (277-327) 12.50 (11.20-13.60) 3.83 (3.25-4.37) 7.10 (7.60-8.00) 贝加尔针茅 Stipa baicalensis,
羊草 Leymus chinensis
典型草原
Typical steppe
242 (174-295) 14.00 (12.60-18.20) 3.02 (2.93-3.11) 7.50 (7.26-7.73) 大针茅 Stipa grandis,
克氏针茅 Stipa kryovii
荒漠草原
Desert steppe
163 (110-219) 16.50 (14.70-17.60) 2.48 (2.41-2.54) 7.80 (6.65-7.56) 小针茅 Stipa klemenzii,
短花针茅 Stipa breviflora

Fig. 1

The distribution of sampling sites."

Appendix I

The mass percentage (%) of each aggregate fraction in different soil layers (mean ± SE)"

土层 Soil layer (cm) 草甸草原 Meadow steppe (%) 典型草原 Typical steppe (%) 荒漠草原 Desert steppe (%)
0-10 A1 14.15 ± 1.98a 13.58 ± 1.20a 14.8 ± 1.49a
A2 9.33 ± 0.93a 8.32 ± 0.44a 5.90 ± 0.45a
A3 15.90 ± 2.96a 10.33 ± 1.24ab 6.76 ± 0.71b
A4 14.15 ± 4.48a 5.93 ± 0.99b -
10-20 A1 18.82 ± 3.41a 12.89 ± 1.02ab 12.67 ± 1.30b
A2 10.37 ± 1.30a 8.30 ± 0.59a 6.84 ± 1.09a
A3 15.43 ± 3.08a 9.30 ± 0.93ab 7.32 ± 0.90b
20-30 A4 10.22 ± 2.87a 4.51 ± 0.96b -
A1 22.86 ± 3.23a 13.70 ± 1.39ab 10.14 ± 1.16b
A2 12.93 ± 1.34a 7.65 ± 0.52ab 6.64 ± 0.65b
A3 12.39 ± 2.54a 9.24 ± 0.95a 7.74 ± 1.35a
A4 6.95 ± 1.35a 3.72 ± 1.03a -
30-50 A1 18.97 ± 2.43a 13.55 ± 1.16ab 10.30 ± 1.20b
A2 14.70 ± 2.61a 8.74 ± 0.82ab 6.93 ± 1.53b
A3 13.39 ± 2.83a 8.02 ± 0.75ab 6.75 ± 0.66b
A4 4.76 ± 0.79a 3.70 ± 1.17a -
50-70 A1 23.89 ± 8.50a 17.02 ± 3.26b 9.43 ± 1.50c
A2 12.34 ± 3.64a 7.18 ± 1.09ab 5.32 ± 0.68b
A3 17.35 ± 5.94a 6.84 ± 1.28b 6.29 ± 0.83b
A4 - - -
70-100 A1 29.72 ± 9.86a 14.71 ± 3.01b 10.09 ± 1.22b
A2 10.79 ± 2.97a 6.87 ± 1.08a 5.15 ± 1.150a
A3 14.68 ± 5.49a 6.65 ± 1.46b 7.86 ± 2.23b
A4 - - -

Appendix II

The two-way ANOVA results of soil depth and grassland type on the mass percentage of aggregate"

因素 Factor 团聚体质量百分数 Mass percentage of aggregate
土层深度 Soil depth 0.12
草原类型 Grassland type < 0.01
土层深度×草原类型 Soil depth × Grassland type 0.41

Table 2

The mass percentage (%) of total soil aggregate in different soil layers (mean ± SE)"

土层 Soil layer (cm) 草甸草原 Meadow steppe (%) 典型草原 Typical steppe (%) 荒漠草原 Desert steppe (%)
0-10 49.66 ± 1.12a 35.07 ± 2.20b 27.25 ± 1.87b
10-20 48.63 ± 2.08a 32.30 ± 2.19b 26.84 ± 2.76b
20-30 52.15 ± 5.70a 31.80 ± 2.32b 24.52 ± 2.68b
30-50 48.20 ± 1.79a 31.53 ± 2.28b 24.45 ± 3.26b
50-70 49.14 ± 14.21a 31.21 ± 0.82b 21.04 ± 2.49b
70-100 48.40 ± 15.21a 28.82 ± 1.5b 23.10 ± 3.73b
0-100 49.52 ± 2.76a 32.32 ± 1.08b 25.22 ± 1.17b

Table 3

The linear relationships between total aggregate mass percentage of different soil layers and climate factors"

土层
Soil layer (cm)
年降水量 Mean annual precipitation (MAP) (mm) 年平均气温 Mean annual air temperature (MAT) (℃)
a b R2 p a b R2 p
0-10 0.13 -2.10 0.26 < 0.01 -2.78 41.06 0.20 < 0.01
10-20 0.12 0.17 0.18 < 0.01 -2.59 39.65 0.14 < 0.01
20-30 0.13 -4.05 0.20 < 0.01 -3.21 10.24 0.20 < 0.01
30-50 0.12 -1.64 0.16 < 0.01 -3.21 39.26 0.21 < 0.01
50-70 0.13 -7.19 0.11 0.06 -3.32 38.21 0.15 0.03
70-100 0.14 -11.35 0.11 0.06 -2.73 36.29 0.07 0.11

Appendix III

The mean mass diameter and geometric mean diameter of soil aggregates in different soil layers (mean ± SE)"

土层 Soil layer (cm) 草甸草原 Meadow steppe 典型草原 Typical steppe 荒漠草原 Desert steppe
MMD GMD MMD GMD MMD GMD
0-10 0.76 ± 0.11 0.38 ± 0.10 0.49 ± 0.04 0.20 ± 0.02 0.31 ± 0.02 0.04 ± 0.01
10-20 0.65 ± 0.09 0.29 ± 0.07 0.46 ± 0.03 0.17 ± 0.02 0.36 ± 0.02 0.12 ± 0.01
20-30 0.46 ± 0.06 0.17 ± 0.03 0.44 ± 0.03 0.16 ± 0.02 0.39 ± 0.03 0.14 ± 0.01
30-50 0.46 ± 0.05 0.17 ± 0.02 0.38 ± 0.02 0.14 ± 0.01 0.38 ± 0.01 0.13 ± 0.01
50-70 0.43 ± 0.02 0.16 ± 0.01 0.33 ± 0.04 0.12 ± 0.02 0.39 ± 0.03 0.13 ± 0.01
70-100 0.37 ± 0.05 0.12 ± 0.03 0.31 ± 0.03 0.11 ± 0.01 0.40 ± 0.05 0.14 ± 0.03

Fig. 2

Mean mass diameter (MMD) (A) and geometric mean diameter (GMD) (B) of soil aggregates at different soil depths in three types of grassland (mean ± SE). Lowercase letters represent the differences of MMD and GMD in the same soil layer among three types of grassland at the level of 5%. Uppercase letters represent the differences of MMD and GMD among different soil layers in one type of grassland at the level of 5%."

[1] Abiven S, Menasseri S, Chenu C (2009). The effects of organic inputs over time on soil aggregate stability—A literature analysis.Soil Biology & Biochemistry, 41, 1-12.
doi: 10.1016/j.soilbio.2008.09.015 pmid: 4314136
[2] Abrishamkesh S, Gorji M, Asadi H (2011). Long-term effects of land use on soil aggregate stability.International Agrophysics, 25, 103-108.
[3] Allison V, Yermakov Z, Miller R, Jastrow J, Matamala R (2007). Using landscape and depth gradients to decouple the impact of correlated environmental variables on soil microbial community composition.Soil Biology & Biochemistry, 39, 505-516.
doi: 10.1016/j.soilbio.2006.08.021
[4] Amezketa E (1999). Soil aggregate stability: A review.Journal of Sustainable Agriculture, 14, 83-151.
doi: 10.1300/J064v14n02_08
[5] Austin MP, van Niel KP (2011). Improving species distribution models for climate change studies: Variable selection and scale.Journal of Biogeography, 38, 1-8.
doi: 10.1111/j.1365-2699.2010.02416.x
[6] Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau.Ecology, 89, 2140-2153.
doi: 10.1890/07-0992.1 pmid: 18724724
[7] Bird SB, Herrick JE, Wander M, Wright S (2002). Spatial heterogeneity of aggregate stability and soil carbon in semi- arid rangeland.Environmental Pollution, 116, 445-455.
doi: 10.1016/S0269-7491(01)00222-6 pmid: 11822724
[8] Bird SB, Herrick JE, Wander MM, Murray L (2007). Multi-scale variability in soil aggregate stability: Implications for understanding and predicting semi-arid grassland degradation.Geoderma, 140, 106-118.
doi: 10.1016/j.geoderma.2007.03.010
[9] Blume E, Bischoff M, Reichert J, Moorman T, Konopka A, Turco R (2002). Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season.Applied Soil Ecology, 20, 171-181.
doi: 10.1016/S0929-1393(02)00025-2
[10] Cavagnaro T, Jackson L, Six J, Ferris H, Goyal S, Asami D, Scow K (2006). Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production.Plant and Soil, 282, 209-225.
doi: 10.1007/s11104-005-5847-7
[11] Chen S, Sun T (2017). Research of soil aggregate stability in different degradation stages of Songnen grassland.Pratacultural Science, 34, 217-223. (in Chinese with English abstract)[陈帅, 孙涛 (2017). 松嫩草地不同退化阶段的土壤团聚体稳定性. 草业科学, 34, 217-223.]
doi: 10.11829/j.issn.1001-0629.2016-0170
[12] Chenu C, Le Bissonnais Y, Arrouays D (2000). Organic matter influence on clay wettability and soil aggregate stability.Soil Science Society of America Journal, 64, 1479-1486.
doi: 10.2136/sssaj2000.6441479x
[13] Denef K, Zotarelli L, Boddey RM, Six J (2007). Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two oxisols.Soil Biology & Biochemistry, 39, 1165-1172.
doi: 10.1016/j.soilbio.2006.12.024
[14] Jastrow JD (1996). Soil aggregate formation and the accrual of particulate and mineral-associated organic matter.Soil Biology & Biochemistry, 28, 665-676.
doi: 10.1016/0038-0717(95)00159-X
[15] Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 10, 423-436.
[16] Kemper W, Chepil W (1965). Size distribution of aggregates. In: Black CA ed. Physical and Mineralogical Properties. American Society of Agronomy, Madison. 499-510.
[17] Lal R (2000). Physical management of soils of the tropics: Priorities for the 21st Century.Soil Science, 165, 191-207.
doi: 10.1097/00010694-200003000-00002
[18] Lehrsch G, Sojka R, Carter D, Jolley P (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter.Soil Science Society of America Journal, 55, 1401-1406.
doi: 10.2136/sssaj1991.03615995005500050033x
[19] Li B (1979). The general characteristics of grassland vegetation in China. Journal of Chinese Grassland, 1, 2-12. [李博 (1979). 中国草原植被的一般特征. 中国草地学报, 1, 2-12.]
[20] Li JL, Jiang CS, Hao QJ (2015). Distribution characteristics of soil organic carbon and its physical fractions under the different land uses in Jinyun Mountain.Acta Ecologica Sinica, 35, 3733-3742. (in Chinese with English abstract)[李鉴霖, 江长胜, 郝庆菊 (2015). 缙云山不同土地利用方式土壤有机碳组分特征. 生态学报, 35, 3733-3742.]
doi: 10.5846/stxb201310162505
[21] Li XZ, Chen ZZ (2004). Soil microbial biomass C and N along a climatic transect in the Mongolian steppe.Biology and Fertility of Soils, 39, 344-351.
doi: 10.1007/s00374-004-0720-z
[22] Liu EK, Zhao BQ, Mei XR, Li XY, Li J (2010). Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application.Acta Ecologica Sinica, 30, 1035-1041. (in Chinese with English abstract)[刘恩科, 赵秉强, 梅旭荣, 李秀英, 李娟 (2010). 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响. 生态学报, 30, 1035-1041.]
[23] Luo YQ, Gerten D, Le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W (2008). Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones.Global Change Biology, 14, 1986-1999.
doi: 10.1111/j.1365-2486.2008.01629.x
[24] Ma WH (2006). Carbon Storage in Temperate Grassland of Inner Mongolia. PhD dissertation. Peking University, Beijing. 18-19. (in Chinese with English abstract)[马文红 (2006). 内蒙古温带草地的碳储量. 博士学位论文. 北京大学, 北京. 18-19.]
[25] Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010). Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites.Global Ecology and Biogeography, 19, 233-243.
doi: 10.1111/j.1466-8238.2009.00508.x
[26] Ma WH, Yang YH, He JS, Zeng H, Fang JY (2008). Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia.Science China Series C: Life Sciences, 51, 263-270.
doi: 10.1007/s11427-008-0029-5 pmid: 18246314
[27] Marquez CO, Garcia VJ, Cambardella CA, Schultz RC, Isenhart TM (2004). Aggregate-size stability distribution and soil stability.Soil Science Society of America Journal, 68, 725-735.
doi: 10.2136/sssaj2004.0725
[28] Nimmo JR, Perkins KS (2002). Aggregate stability and size distribution. In: Dane JH, Topp GC eds. Methods of Soil Analysis. American Society of Agronomy, Madison. 317-328.
[29] Pinheiro E, Pereira M, Anjos L (2004). Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a red latosol from brazil.Soil and Tillage Research, 77, 79-84.
doi: 10.1016/j.still.2003.11.005
[30] Sanderman J, Amundson R (2008). A comparative study of dissolved organic carbon transport and stabilization in california forest and grassland soils.Biogeochemistry, 89, 309-327.
doi: 10.1007/s10533-008-9221-8
[31] Scurlock J, Hall D (1998). The global carbon sink: A grassland perspective.Global Change Biology, 4, 229-233.
doi: 10.1046/j.1365-2486.1998.00151.x
[32] Six J, Conant R, Paul EA, Paustian K (2002a). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils.Plant and Soil, 241, 155-176.
doi: 10.1023/A:1016125726789
[33] Six J, Elliott E, Paustian K, Doran JW (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils.Soil Science Society of America Journal, 62, 1367-1377.
doi: 10.2136/sssaj1998.03615995006200050032x
[34] Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002b). Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage.Agronomie, 22, 755-775.
doi: 10.1051/agro:2002043
[35] Tian SZ, Wang Y, Li N, Ning TY, Wang BW, Zhao HX, Li ZJ (2013). Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain.Acta Ecologica Sinica, 33, 7116-7124. (in Chinese with English abstract)[田慎重, 王瑜, 李娜, 宁堂原, 王丙文, 赵红香, 李增嘉 (2013). 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响. 生态学报, 33, 7116-7124.]
[36] Wang C, Wang XB, Liu DW, Wu HH, Lü XT, Fang YT, Cheng WX, Luo WT, Jiang P, Shi J (2014). Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands.Nature Communications, 5, 4799.
doi: 10.1038/ncomms5799 pmid: 25185641
[37] Wu ZT, Dijkstra P, Koch GW, Penuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17, 927-942.
doi: 10.1111/j.1365-2486.2010.02302.x
[38] Yang YH, Fang JY, Ji CJ, Datta A, Li P, Ma WH, Mohammat A, Shen HH, Hu HF, Knapp BO, Smith P (2014). Stoichiometric shifts in surface soils over broad geographical scales: Evidence from China’s grasslands.Global Ecology and Biogeography, 23, 947-955.
doi: 10.1111/geb.12175
[39] Yang YH, Fang JY, Ma WH, Guo D, Mohammat A (2010a). Large-scale pattern of biomass partitioning across China’s grasslands.Global Ecology and Biogeography, 19, 268-277.
doi: 10.1111/j.1466-8238.2009.00502.x
[40] Yang YH, Fang JY, Ma WH, Smith P, Mohammat A, Wang SP, Wang W (2010b). Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s.Global Change Biology, 16, 3036-3047.
doi: 10.1111/j.1365-2486.2009.02123.x
[41] Yang YH, Ji CJ, Ma WH, Wang SF, Wang SP, Han WX, Mohammat A, Robinson D, Smith P (2012). Significant soil acidification across northern china's grasslands during 1980s-2000s.Global Change Biology, 18, 2292-2300.
doi: 10.1111/j.1365-2486.2012.02694.x
[42] Zhang ZH, Li XY, Jiang ZY, Peng HY, Li L, Zhao GQ (2013). Changes in some soil properties induced by re-conversion of cropland into grassland in the semiarid steppe zone of Inner Mongolia, China.Plant and Soil, 373, 89-106.
doi: 10.1007/s11104-013-1772-3
[43] Zhao SW, Su J, Wu JS, Yang YH, Liu NN (2006). Changes of soil aggregate organic carbon during process of vegetation restoration in Ziwuling.Journal of Soil and Water Conservation, 20, 114-117. (in Chinese with English abstract)[赵世伟, 苏静, 吴金水, 杨永辉, 刘娜娜 (2006). 子午岭植被恢复过程中土壤团聚体有机碳含量的变化. 水土保持学报, 20, 114-117.]
[1] LI Peng, LI Zhan-Bin, LU Ke-Xin. RELATIONSHIP BETWEEN HERBACEOUS ROOT SYSTEM AND VERTICAL SOIL SEDIMENT YIELD IN LOESS AREA [J]. Chin J Plan Ecolo, 2006, 30(2): 302-306.
[2] ZHANG Yuan-Dong, XU Ying-Tao, GU Feng-Xue, PAN Xiao-Ling. Correlation Analysis of NDVI With Climate and Hydrological Factors in Oasis and Desert [J]. Chin J Plan Ecolo, 2003, 27(6): 816-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Adebola Raji, Oluseyi Ladeinde and Alfred Dixon. Screening Landraces for Additional Sources of Field Resistance to Cassava Mosaic Disease and Green Mite for Integration into Cassava Improvement Program[J]. J Integr Plant Biol, 2008, 50(3): 311 -318 .
[2] . [J]. Plant Diversity, 2005, 27(04): 337 -354 .
[3] Minliang Jin, Xiangguo Liu, Wei Jia, Haijun Liu, Wenqiang Li, Yong Peng, Yanfang Du, Yuebin Wang, Yuejia Yin, Xuehai Zhang, Qing Liu, Min Deng, Nan Li, Xiyan Cui, Dongyun Hao and Jianbing Yan. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT[J]. J Integr Plant Biol, 2018, 60(6): 465 -480 .
[4] WU Li-Hong, YANG De-Po, WANG Fa-Song, CHANG Hung-Ta. New taxa of Hypericum (Clusiaceae) from China[J]. J Syst Evol, 2004, 42(1): 73 -78 .
[5] SONG Bao-Hua, LI Fa-Zeng. The utility of trnK intron 5′ region in phylogenetic analysis of Ulmaceae s. l.[J]. J Syst Evol, 2002, 40(2): 125 -132 .
[6] LI Zhen-Yu, SONG Bao-Hua, LI Fa-Zeng. The identity of Amaranthus taishanensis F. Z. Li et C. K. Ni[J]. J Syst Evol, 2002, 40(4): 383 -384 .
[7] Zengxiang Qi, Weihua Xu, Xingyao Xiong, Zhiyun Ouyang, Hua Zheng, Dexin Gan. Assessment of potential habitat for Ursus thibetanus in the Qinling Mountains[J]. Biodiv Sci, 2011, 19(3): 343 -352 .
[8] Huai YANG, Yi-De LI, Hai REN, Tu-Shou LUO, Ren-Li CHEN, Wen-Jie LIU, De-Xiang CHEN, Han XU, Zhang ZHOU, Ming-Xian LIN, Qiu YANG, Hai-Rong YAO, Guo-Yi ZHOU. Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China[J]. Chin J Plan Ecolo, 2016, 40(4): 292 -303 .
[9] Guan Jun-feng. Effect of Water Loss and Wilting of Harvested Spinach Leaves on Membrane Permeability and Lipid Perexidation[J]. Chin Bull Bot, 1992, 9(04): 38 -40 .
[10] Maria Paniw, Roberto Salguero-Gómez, Fernando Ojeda. Transient facilitation of resprouting shrubs in fire-prone habitats[J]. J Plant Ecol, 2018, 11(3): 475 -483 .