Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (2): 240-251.doi: 10.17521/cjpe.2017.0225

• Research Articles • Previous Articles     Next Articles

Effects of drought stress on the osmotic adjustment and active oxygen metabolism of Phoebe zhennan seedlings and its alleviation by nitrogen application

Xi WANG,Hong-Ling HU,Ting-Xing HU(),Cheng-Hao ZHANG,Xin WANG,Dan LIU   

  1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
  • Online:2018-04-16 Published:2018-02-20
  • Contact: Ting-Xing HU E-mail:jshe@pku.edu.cn
  • Supported by:
    Supported by the “National Key Sci-tech Project of 12th Five Year Plan” of China (2011BAC09B05)(2011BAC09B05)

Abstract:

Aims Two-year-old seedlings of Phoebe zhennan were used in this study to explore the responses of osmotic adjustment and active oxygen metabolism to drought stress and the mitigation effect of nitrogen application.

Methods The soil water content was firstly adjusted to four treatment levels, i.e. 80% of field water holding capacity (80% FC), 50% FC, 30% FC and 15% FC, respectively. The physiological variables of plants were measured after one week, and then three nitrogen application rates, control (N0), medium nitrogen (MN) and high nitrogen (HN) were performed at an interval of 7 days for four times (7 d, 14 d, 21 d and 28 d, respectively). The same physiological variables were determined again one month after the accomplishment of nitrogen application.

Important findings 1) The free proline (Pro) and soluble sugar (SS) contents in the leaves increased significantly with the aggravation of drought stress after 7 days of drought, but the content of soluble protein (SP) was firstly increased and then declined. The increase of Pro content was especially obvious under severe drought (15% FC). After nitrogen application, the content of Pro raise further, but the values varied in drought treatment. The SS contents under sufficient water supply (80% FC) and mild drought (50% FC) were decreased by MN, but it did not change significantly when supplied with HN despite the soil water content. After nitrogen application, the SP contents under 80% FC and 50% FC were lower than those of no exogenous N, while they were opposite response under 30% FC and 15% FC. 2) Before nitrogen application, with the aggravation of drought stress, the hydrogen peroxide (H2O2) content, superoxide dismutase (SOD) activity, catalase (CAT) activity increased significantly, and the peroxidase (POD) activity showed an up-down trend. After nitrogen application, the content of H2O2 was generally deceased at each water condition, with the maximum decrease at MN, while the HN treatment was not conducive to reduce the content of H2O2. The activities of three kinds of enzymes responded differently to the severity of drought and the level of nitrogen application. 3) Before nitrogen application, the content of malondialdehyde (MDA) in leaves increased significantly when the soil water content declined to and below 50% FC. The relative electrical conductivity (REC) was decreased at first, and followed by significant increase. Except severe drought (15% FC) stress, the MDA content showed a decreasing trend at MN, but a rebound at HN. As regards severe drought stress, however, the content of MDA increased at both MN and HN, indicating that nitrogen application is not a good choice to alleviate the damage caused by severe drought stress. 4)Two-factor ANOVA revealed an obvious interaction between nitrogen application and drought stress. In conclusion, a proper amount of nitrogen (1.35 g·a -1 for each sapling) could somewhat alleviate drought stress no severer than 15% FC on seedlings of Phoebe zhennan, but excessive nitrogen at rate of or more than 2.70 g·a -1 per sapling is not recommended.

Key words: Phoebe zhennan, seedlings, drought stress, osmotic adjustment, reactive oxygen, nitrogen application

Table 1

Soil volumetric water content of the four moisture gradients and total mass of plant, soil and pot"

土壤含水量(处理水平)
Soil water content % FC (The level of drought)
体积含水量 Soil volumetric water content (%) 盆栽总质量(平均值±标准偏差)
Pot’s mass (mean ± SD) (g)
80% FC (水分充足 Sufficient water) 28.8 13β696 ± 97
50% FC (轻度干旱 Mild drought) 18.0 12β979 ± 112
30% FC (中度干旱 Moderate drought) 10.8 12β357 ± 106
15%FC (重度干旱 Severe drought) 5.4 12β070 ± 84

Table 2

Drought stress gradients and coupled exogenous N inputs designed in the experiment"

试验代号
Test code
土壤水分含量
Soil moisture content (% FC)
氮水平
N level (g·pot-1)
15N0 15 0
15MN 15 1.35
15HN 15 2.70
30N0 30 0
30MN 30 1.35
30HN 30 2.70
50N0 50 0
50MN 50 1.35
50HN 50 2.70
80N0 80 0
80MN 80 1.35
80HN 80 2.70

Fig. 1

Proline content in Phoebe zhennan seedlings seven days after the formation of drought gradient (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). FC, field water holding capacity."

Table 3

Proline content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)"

处理 Treatment 土壤含水量 Soil moisture content
80% FC 50% FC 30% FC 15% FC 平均值 Mean
氮水平 N level N0 3.35 ± 0.11Cb 2.23 ± 0.25Cc 2.60 ± 0.03Cbc 8.33 ± 0.27Ca 4.13 ± 2.57C
MN 5.77 ± 0.55Bc 5.97 ± 0.16Bc 12.93 ± 0.33Bb 18.48 ± 0.18Ba 10.79 ± 5.54B
HN 10.88 ± 0.09Ac 7.43 ± 0.20Ad 26.90 ± 1.85Ab 37.74 ± 0.17Aa 20.74 ± 12.83A
平均值 Average value 6.67 ± 3.34c 5.21 ± 2.33d 14.14 ± 10.60b 21.52 ± 12.94a
F(SW×SN) 332.84**
F(SW) 11β481.98**
F(SN) 2β442.89**

Fig. 2

Soluble sugar content in Phoebe zhennan seedlings seven days after the formation of drought gradient (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). FC, field water holding capacity."

Table 4

Soluble sugar content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)"

处理 Treatment 土壤含水量 Soil moisture content
80% FC 50% FC 30% FC 15% FC 平均值 Mean
氮水平 N level N0 0.516 ± 0.007Bb 0.536 ± 0.009Bb 0.605 ± 0.008Aa 0.612 ± 0.010ABa 0.568 ± 0.045A
MN 0.548 ± 0.005Ab 0.564 ± 0.011Ab 0.569 ± 0.009Bb 0.595 ± 0.013Ba 0.569 ± 0.020A
HN 0.523 ± 0.009ABc 0.548 ±0.010 ABc 0.574 ± 0.008Bb 0.633 ± 0.036Aa 0.569 ± 0.046A
平均值 Mean 0.529 ± 0.015d 0.549 ± 0.015c 0.583 ± 0.018b 0.614 ± 0.026a
F(SW×SN) 6.560**
F(SW) 67.479**
F(SN) 0.062

Fig. 3

Soluble protein content in Phoebe zhennan seedlings seven days after the formation of drought gradient (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). FC, field water holding capacity."

Table 5

Soluble protein content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)"

处理 Treatment 土壤含水量 Soil moisture content
80% FC 50% FC 30% FC 15% FC 平均值 Mean
氮水平 N level N0 7.57 ± 0.06Aa 6.86 ± 0.13Ab 4.61 ± 0.16Cd 5.53 ± 0.10Cc 6.14 ± 1.20B
MN 6.65 ± 0.05Bb 5.84 ± 0.13Bc 5.34 ± 0.48Bd 7.16 ± 0.06Aa 6.25 ± 0.77B
HN 5.79 ± 0.03Cc 6.16 ± 0.38Bb 7.72 ± 0.14Aa 6.37 ± 0.21Bb 6.51 ± 0.79A
平均值 Mean 6.67 ± 0.77a 6.28 ± 0.50b 5.89 ± 1.43b 6.35 ± 0.71c
F(SW×SN) 99.28**
F(SW) 21.61**
F(SN) 10.15**

Fig. 4

H2O2 content in Phoebe zhennan seedlings seven days after the formation of drought gradient (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). FC, field water holding capacity."

Table 6

H2O2 content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)"

处理 Treatment 土壤含水量 Soil moisture content
80% FC 50% FC 30% FC 15% FC 平均值 Mean
氮水平 N level N0 127.49 ± 6.40Ab 141.71 ± 2.68Aa 132.09 ± 2.59Ab 123.57 ± 7.03Ab 131.21 ± 8.30C
MN 112.22 ± 10.23Bb 130.13 ± 3.08Ba 110.92 ± 3.12Cb 101.57 ± 6.07Ac 113.71 ± 12.07B
HN 116.72 ± 0.08Bab 115.01 ± 1.02Cb 122.61 ± 0.96Bab 125.21 ± 3.07Ba 119.89 ± 4.60A
平均值 Mean 118.81 ± 9.10bc 128.95 ± 11.79a 121.88 ± 9.42b 116.78 ± 12.43c
F(SW×SN) 212.35**
F(SW) 255.08**
F(SN) 945.69**

Fig. 5

Antioxidant enzyme activity in Phoebe zhennan seedlings seven days after the formation of drought gradient (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). FC, field water holding capacity. CAT, catalase; POD, peroxidase; SOD, superoxide dismutase."

Table 7

Antioxidant enzyme activity in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)"

指标 Index 处理 Treatment 土壤含水量 Soil moisture content 平均值
Mean
F
80% FC 50% FC 30% FC 15% FC
SOD活性
SOD activity
(U·g-1·min-1)
氮水平
N level
N0 1β251.53 ± 2.25Ab 1β337.66 ± 24.89Aa 1β041.02 ± 53.00Cc 897.28 ± 42.24Bd 1β131.87 ± 183.48B F(SW×SN) = 36.74**
F(SW) = 161.34**
F(SN) = 58.74**
MN 1β284.91 ± 1.15Aa 1β306.73 ± 6.73ABa 1β143.10 ± 33.87Bb 1β136.76 ± 16.73Ab 1β217.87 ± 83.47C
HN 1β258.43 ± 4.21Ab 1β278.82 ± 18.54Bb 1β336.30 ± 37.39Aa 1β113.63 ± 17.59Ac 1β246.80 ± 87.83A
平均值
Mean
1β264.96 ± 15.46b 1β307.74 ± 30.03a 1β173.47 ± 134.93c 1β049.22 ± 116.96d
POD活性
POD activity
(U·g-1·min-1)
氮水平
N level
N0 2β153.65 ± 1.49Bab 2β043.13 ± 27.43Ab 2β200.82 ± 39.94Ba 2β073.00 ± 61.27Bb 2β117.65 ± 73.54B F(SW×SN) = 36.19**
F(SW) = 24.11**
F(SN) = 123.95**
MN 1β888.18 ± 39.09Ca 1β960.08 ± 30.45Aa 1β749.85 ± 141.03Cb 1β673.58 ± 17.14Cb 1β817.92 ± 133.86C
HN 2β347.99 ± 134.53Ab 1β720.76 ± 73.13Bc 2β545.87 ± 62.54Aa 2β412.04 ± 48.07Ab 2β256.67 ± 339.69A
平均值
Mean
2β129.94 ± 211.82a 1β907.99 ± 150.89c 2β165.51 ± 354.77a 2β052.87 ± 322.59b
CAT活性
CAT activity
(U·g-1·s-1)
氮水平
N level
N0 2.90 ± 0.06Ab 3.15 ± 0.05Aa 3.10 ± 0.05ABa 2.60 ± 0.04Bc 2.93 ± 0.23A F(SW×SN) = 8.39**
F(SW) = 28.39**
F(SN) = 21.69**
MN 2.52 ± 0.15Bc 2.74 ± 0.09Cb 3.02 ± 0.02Ba 2.75 ± 0.09Bb 2.75 ± 0.20B
HN 2.74 ± 0.11Ad 2.94 ± 0.10Bcd 3.26 ± 0.09Aa 3.04 ± 0.10Abc 3.01 ± 0.21A
平均值
Mean
2.74 ± 0.21c 2.94 ± 0.19b 3.12 ± 0.12a 2.79 ± 0.21c

Fig. 6

Malondialdehyde (MDA) content in Phoebe zhennan seedlings seven days after the formation of drought gradient (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). FC, field water holding capacity."

Table 8

Malondialdehyde content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)"

处理 Treatment 土壤含水量 Soil moisture content
80% FC 50% FC 30% FC 15% FC 平均值 Mean
氮水平 N level N0 0.070β2 ± 0.000β5Ac 0.074β8 ± 0.001β5Ab 0.078β3 ± 0.001β8Aa 0.067β0 ± 0.001β8Bd 0.072β6 ± 0.004β7A
MN 0.067β9 ± 0.002β3ABb 0.069β8 ± 0.000β8Bb 0.073β0 ± 0.001β2Ba 0.069β9 ± 0.000β6Ab 0.070β2 ± 0.002β2B
HN 0.066β8 ± 0.001β3Bc 0.071β7 ± 0.001β3Bb 0.077β0 ± 0.002β5Aa 0.071β0 ± 0.001β8Ab 0.071β6 ± 0.004β1A
平均值 Mean 0.068β3 ± 0.002β0c 0.072β1 ± 0.002β4b 0.076β1 ± 0.002β9a 0.069β3 ± 0.002β3c
F(SW×SN) 6.133β2**
F(SW) 43.294β3**
F(SN) 7.046β1**

Fig. 7

Relative electrical conductivity in Phoebe zhennan seedlings seven days after the formation of drought gradient (mean ± SD). Different lowercase letters indicate significant differences between treatments (p < 0.05). FC, field water holding capacity."

Table 9

Relative electrical conductivity in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)"

处理 Treatment 土壤含水量 Soil moisture content
80% FC 50% FC 30% FC 15% FC 平均值 Mean
氮水平 N level N0 31.67 ± 0.31Bb 37.46 ± 0.58Ba 33.24 ± 0.92Bb 32.73 ± 2.04Ab 33.77 ± 2.50B
MN 39.52 ± 3.95Ab 45.54 ± 1.56Aa 35.56 ± 0.62Bc 32.57 ± 2.75Ac 38.30 ± 5.52A
HN 41.54 ± 1.64Aa 37.30 ± 0.61Bb 41.28 ± 0.72Aa 33.01 ± 0.04Ac 38.28 ± 3.72A
平均值 Mean 37.58 ± 5.00b 40.10 ± 4.18a 36.69 ± 3.64b 32.77 ± 1.72c
F(SW×SN) 13.48**
F(SW) 28.52**
F(SN) 27.93**
[1] Aebi H ( 1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
doi: 10.1016/S0076-6879(84)05016-3
[2] Blackman CJ, Brodribb TJ, Jordan GJ ( 2010). Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species. Plant, Cell & Environment, 32, 1584-1595.
[3] Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW ( 2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148.
doi: 10.1073/pnas.0505734102 pmid: 16217022
[4] Caprioli M, Krabbe KA, Melone G, Raml?v H, Ricci C, Santo N ( 2004). Trehalose in desiccated rotifers: A comparison between a bdelloid and a monogonont species. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 139, 527-532.
doi: 10.1016/j.cbpb.2004.10.019 pmid: 15596399
[5] Chen LS, Liu XH ( 2001). Effects of water stress on cell wall H +-ATPase activity in leaves of Litchi chinensis Stone. with different drought-resistance. Journal of Tropical and Subtropical Botany, 9(2), 149-153.
[ 陈立松, 刘星辉 ( 2001). 水分胁迫对抗旱性不同的荔枝叶片细胞壁H +-ATPase活性的影响 . 热带亚热带植物学报, 9(2), 149-153.]
[6] Chen SY ( 1991). Injury of membrane lipid peroxidation to plant cell. Plant Physiology Communication, 27(2), 84-90.
[ 陈少裕 ( 1991). 膜脂过氧化对植物细胞的伤害. 植物生理学通讯, 27(2), 84-90.]
[7] Dai YC, Xu KY, Ma K, Zhang Y, Xia GH ( 2015). Physiological responses of the rare and endangered Ardisia violaceaMyrsinaceae) seedlings to progressive drought stress. Acta Ecologica Sinica, 35, 2954-2959.
doi: 10.5846/stxb201308302175
[ 代英超, 徐奎源, 马凯, 张云, 夏国华 ( 2015). 珍稀濒危植物堇叶紫金牛对持续干旱的生理响应. 生态学报, 35, 2954-2959.]
doi: 10.5846/stxb201308302175
[8] Dashek WV, Erickson SS ( 1981). Isolation, assay, biosynthesis, metabolism, uptake and cranslocation and function of proline in plant cells and tissues. Botanical Review, 47, 349-385.
doi: 10.1007/BF02860578
[9] Delhaize E, Ryan PR ( 1995). Aluminum toxicity and tolerance in plants. Plant Physiology, 107, 315-321.
doi: 10.1104/pp.107.2.315 pmid: 12228360
[10] Fang WP ( 1981). Flora of Sichuan. Sichuan People’s Publishing House, Chengdu.
[ 方文培 ( 1981). 四川植物志. 四川人民出版社, 成都.]
[11] Fridorich I ( 1975). Superoxide dismutase. Annual Review of Biochemistry, 44, 147-159.
doi: 10.1146/annurev.bi.44.070175.001051
[12] Gao JF ( 2006). Experimental Guidance for Plant Physiology. Higher Education Press,Beijing. 211.
[ 高俊凤 ( 2006). 植物生理学实验指导. 高等教育出版社, 北京. 211.]
[13] Giannopolitis CN, Ries SK ( 1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[14] Hanson AD, Nelsen CE, Pedersen AR, Everson EH ( 1979). Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance. Crop Science, 19, 489-493.
doi: 10.2135/cropsci1979.0011183X001900040015x
[15] Hasio TC ( 1973). Water and Plant Life. Academic Press, New York. 281-303.
[16] Hason AD ( 1980). Interpreting the metabolic response of plants to water stress. Hortscience, 15, 623-629.
[17] Heikkala JJ, Papp JTE, Schultz GA, Bewley JD ( 1984). Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisci acid and wounding. Plant Physiology, 76, 270-274.
doi: 10.1104/pp.76.1.270 pmid: 16663813
[18] Hisao TC ( 1973). Plants response to water stress. Annual Review of Plant Physiology, 24, 519-570.
doi: 10.1146/annurev.pp.24.060173.002511
[19] Hulbert C, Funkhouder EA, Soltes EJ, Newton RJ ( 1988). Inhibition of protein synthesis in loblolly pine hypocotyls by mannitol-induced water stress. Tree Physiology, 4, 19-26.
doi: 10.1093/treephys/4.1.19 pmid: 14972832
[20] Kocheva KV, Georgiev GI, Kochev VK ( 2014). An improvement of the diffusion model for assessment of drought stress in plant tissues. Physiologia Plantarum, 150, 88-94.
doi: 10.1111/ppl.12074 pmid: 23724871
[21] Kuhns MR, Gjerstad DH ( 1988). Photosynthate allocation in loblolly pine (Pinus taeda) seedlings as affected by moisture stress. Canadian Journal of Forest Research, 18, 285-291.
[22] Lawlor DW, Cornic G ( 2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25, 275-294.
doi: 10.1046/j.0016-8025.2001.00814.x pmid: 11841670
[23] Li HS ( 2012). Modern Plant Physiology. Higher Education Press,Beijing.
[ 李合生 ( 2012). 现代植物生理学. 高等教育出版社, 北京.]
[24] Li HS, Shun Q, Zhao SJ, Zhang WH ( 2000). Principles and Techniques of Plant Physiology and Biochemistry Experiments. Higher Education Press,Beijing. 164- 165, 258-260.
[ 李合生, 孙群, 赵世杰, 章文华 ( 2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 164-165, 258-260.]
[25] Li J ( 2015). Effects of drought stress on soluble proteins of Hordeum vulgare Linn. seedlings. Jiangsu Agricultural Sciences, 43(12), 124-126.
doi: 10.15889/j.issn.1002-1302.2015.12.038
[ 李洁 ( 2015). 干旱胁迫对青稞幼苗可溶性蛋白的影响. 江苏农业科学, 43(12), 124-126.]
doi: 10.15889/j.issn.1002-1302.2015.12.038
[26] Li J, Huang LH, Chen X ( 2015). Physiological response of two Rhododendron simsii seedlings to drought stress and drought resistance evaluation. Southwest China Journal of Agricultural Sciences, 28, 1067-1073.
doi: 10.16213/j.cnki.scjas.2015.03.027
[ 李娟, 黄丽华, 陈训 ( 2015). 2种杜鹃对干旱胁迫的生理响应及抗旱性评价. 西南农业学报, 28, 1067-1073.]
doi: 10.16213/j.cnki.scjas.2015.03.027
[27] Li N ( 2014). Physiological and Ecological Response of Larix gmelinii Seedlings under Soil Drought Stress and Different Nitrogen Levels. Master degree dissertation, Northeast Forestry University,Harbin.
[ 李娜 ( 2014). 落叶松幼苗对干旱胁迫及氮添加的生理生态响应. 硕士学位论文, 东北林业大学, 哈尔滨.]
[28] Li Q ( 2013). Physiological Responds and Adaptation of Miscanthus sacchariflorus and Miscanthus sinensis to Drought Stress. PhD dissertation, Northeast Forestry University, Harbin. 45.
[ 李强 ( 2013). 荻和芒对干旱胁迫的生理响应和适应性. 博士学位论文, 东北林业大学, 哈尔滨. 45.]
[29] Li YJ, Li J, Xu P, He HW ( 2014). Physiological responses of Lycium ruthenicum Murr. seedlings to drought stress. Arid Zone Research, 31, 756-762.
[ 李永洁, 李进, 徐萍, 何宏伟 ( 2014). 黑果枸杞幼苗对干旱胁迫的生理响应. 干旱区研究, 31, 756-762.]
[30] Liu J, Lü B, Xu LL ( 2000). An improved method for the determination of hydrogen peroxide in leaves. Progress in Biophysics, 27, 548-551.
doi: 10.3321/j.issn:1000-3282.2000.05.025
[ 刘俊, 吕波, 徐朗莱 ( 2000). 植物叶片中过氧化氢含量测定方法的改进. 生物化学与生物物理进展, 27, 548-551.]
doi: 10.3321/j.issn:1000-3282.2000.05.025
[31] Liu S, He Q, Li JY, Su Y, Wu JW ( 2016). Physiological responses of the limestone endemic plant Triadica rotundifolia seedlings to drought stress. Journal of South China Agricultural University, 37(2), 96-100.
[ 刘珊, 何茜, 李吉跃, 苏艳, 吴俊文 ( 2016). 石漠化树种圆叶乌桕对干旱胁迫的生理响应. 华南农业大学学报, 37(2), 96-100.]
[32] Liu ZQ, Zhang SC ( 1994). Plant Resistance Physiology. China Agriculture Press, . Beijing 84-123.
[ 刘祖琪, 张石诚 ( 1994). 植物抗性生理学. 中国农业出版社, 北京. 84-123.]
[33] Lü EE, Zhou XR, Zhou ZY, Zhao GQ ( 2016). Physiological responses of the desert shrub Hedysarum mongolicum to drought stress. Acta Prataculturae Sinica, 25(6), 42-50.
doi: 10.11686/cyxb2015274
[ 吕娥娥, 周向睿, 周志宇, 赵桂琴 ( 2016). 荒漠灌木蒙古岩黄芪对干旱胁迫的生理响应. 草业学报, 25(6), 42-50.]
doi: 10.11686/cyxb2015274
[34] Misra A, Tyler G ( 1999). Influence of soil moisture on soil solution chemistry and concentrations of minerals in the calcicoles Phleum phleoides and Veronica spicata grown on a limestone soil. Annals of Botany, 84, 401-410.
[35] Pan RZ ( 2012). Plant Physiology. Higher Education Press, Beijing.
[ 潘瑞炽 ( 2012). 植物生理学. 高等教育出版社, 北京.]
[36] Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B ( 2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163, 361-367.
doi: 10.1016/S0168-9452(02)00140-1
[37] Sun M, An Y, Wang Q, Pan L ( 2010). Effect of water stress and nitrogen application on morphological and physiological character of Zoysia japonica cv. Shanghai. Pratacultural Science, 27(9), 57-63.
[ 孙明, 安渊, 王齐, 潘磊 ( 2010). 干旱胁迫和施氮对结缕草种群特征和生理特性的影响. 草业科学, 27(9), 57-63.]
[38] Taiz L, Zeiger E ( 2010). Plant Physiology. Sinauer Associates, North Miami Beach, USA.
[39] Taylor CB ( 1996). Proline and water deficit: Ups, downs, ins and outs. Plant Cell, 8, 1221-1224.
doi: 10.1105/tpc.8.8.1221
[40] Tyree MT, Zimmermann MH ( 2002). Xylem Structure and the Ascent of Sap. Springer, Berlin.
[41] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, & Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
doi: 10.1038/nature02403
[42] Wu XH, Zheng GP ( 1995). Effect of the moisture content coercive on morphological and physiological process of crops. Journal of Qiqihar Teachers’ College (Natural Science), 15(3), 37-40.
[ 吴旭红, 郑桂萍 ( 1995). 水分胁迫对作物形态和生理过程的影响. 齐齐哈尔师范学院学报(自然科学版), 15(3), 37-40.]
[43] Xiong QE ( 2003). Experimental Course in Plant Physiology. Sichuan Science and Technology Publishing House, Chengdu.72-73, 85-86, 126-127.
[ 熊庆娥 ( 2003). 植物生理学实验教程. 四川科学技术出版社, 成都. 72-73, 85-86, 126-127.]
[44] Yan H, Jia LH, Wang GX ( 2002). Research progress of plant water stress inducible proteins. Chemistry of Life, 22, 165-168.
doi: 10.3969/j.issn.1000-1336.2002.02.028
(in Chinese with English abstract) [ 颜华, 贾良辉, 王根轩 ( 2002). 植物水分胁迫诱导蛋白的研究进展 . 生命的化学, 22, 165-168.]
doi: 10.3969/j.issn.1000-1336.2002.02.028
[45] Yang CB, Yao JX, Li SW, Ni HQ, Liu YQ, Zhang YH, Li JH ( 2016). Growth and physiological responses to drought stress and comprehensive evaluation on drought tolerance in Leuce clones at nursery stage. Journal of Beijing Forestry University, 38(5), 58-66.
[ 杨传宝, 姚俊修, 李善文, 倪惠菁, 刘元铅, 张有慧, 李际红 ( 2016). 白杨派无性系苗期对干旱胁迫的生长生理响应及抗旱性综合评价. 北京林业大学学报, 38(5), 58-66.]
[46] Yang DG, Liu YX, Zhang Q, Jiang ZZ, Song BG ( 2015). Progress on crops osmotic adjustment and genetic engineering of osmotic stress resistance. Crops, ( 1), 6-13.
[ 杨德光, 刘永玺, 张倩, 姜籽竹, 宋北光 ( 2015). 作物渗透调节及抗渗透胁迫基因工程研究进展. 作物杂志, ( 1), 6-13.]
[47] Zhang JX, Kirkham MB ( 1994). Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiology, 35, 785-791.
doi: 10.1016/S0143-4004(05)80424-2
[48] Zhang SQ ( 2011). Tutorial of Experimental Techniques in Plant Physiology. Science Press, Beijing. 203.
[ 张蜀秋 ( 2011). 植物生理学实验技术教程. 科学出版社, 北京. 203.]
[49] Zhou YL, Liu QR ( 2016). Plant Biology. Higher Education Press, Beijing.
[ 周云龙, 刘全儒 ( 2016). 植物生物学. 高等教育出版社, 北京.]
[50] Zuo YM, Yang WZ, Yang TM, Yang MQ, Xu ZL, Yang SB, Zhang JY ( 2016). Comparison of resistant physiological index among four species in the Genus Panax under water stress. Crops, ( 3), 84-88.
[ 左应梅, 杨维泽, 杨天梅, 杨美权, 许宗亮, 杨绍兵, 张金渝 ( 2016). 干旱胁迫下4种人参属植物抗性生理指标的比较. 作物杂志, ( 3), 84-88.]
[1] Gao Huaifeng,Zhang Yafei,Wang Guodong,Sun Xiwu,He Yue,Peng Futian,Xiao Yuansong. The Effect of Molybdenum on Drought Stress Response in Peach [J]. Chin Bull Bot, 2019, 54(2): 227-236.
[2] Xiaoli Zhang, Ping Li, Caiyun Zhou, Mingxia Chen, Xiting Zhao, Mingjun Li. Growth Characters, Yield and Quality of Virus-free Rehmannia glutinosa Seedlings in the Field [J]. Chin Bull Bot, 2017, 52(4): 474-479.
[3] Yu CEN, Mei-Zhen LIU. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress [J]. Chin J Plan Ecolo, 2017, 41(11): 1199-1207.
[4] SHI Xian-Meng,QI Jin-Hua,SONG Liang,LIU Wen-Yao,HUANG Jun-Biao,LI Su,LU Hua-Zheng,CHEN Xi. C, N and P stoichiometry of two dominant seedlings and their responses to nitrogen additions in the montane moist evergreen broad-leaved forest in Ailao Mountains, Yunnan [J]. Chin J Plan Ecolo, 2015, 39(10): 962-970.
[5] WU Hui, DAI Hai-Fang, ZHANG Ju-Song, JIAO Xiao-Ling, LIU Cui, SHI Jun-Yi, FAN Zhi-Chao, and ALIYAN?Rouzi. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves [J]. Chin J Plan Ecolo, 2014, 38(10): 1124-1134.
[6] Chuanlan Wu, Changhai Wang, Mingxiang Liang, Zhaopu Liu, Chaoqiang Jiang, Qingsong Zheng. Effect of NaCl Stress on Growth, Cell Ultrastructure and Ion Homeostasis in Poplar Seedlings [J]. Chin Bull Bot, 2012, 47(6): 615-624.
[7] Zhangxiong Han, Li Li, Xinwen Xu, Xiangfang Lü, Hongxia Yue, Zhen Bian, Lizheng Li. Effect of NaCl on Physiological Features of 4 Legume Seedlings in Desert Areas of Xinjiang, China [J]. Chin Bull Bot, 2012, 47(5): 491-499.
[8] Yue Bin, Wanhui Ye, Honglin Cao, Zhongliang Huang, Juyu Lian. Seedling distribution in a subtropical evergreen broad-leaved forest plot in the Dinghu Mountain [J]. Biodiv Sci, 2011, 19(2): 127-133.
[9] JIN Qing, JIANG Hong, YU Shu-Quan, YIN Xiu-Min. Effects of acid rain stress on gas exchange and chlorophyll fluorescence of Castanopsis sclerophylla seedlings [J]. Chin J Plan Ecolo, 2010, 34(9): 1117-1124.
[10] YU Yang, YU Tao, WANG Yang, YAN Xiu-Feng. Effect of inoculation time on camptothecin content in arbuscular mycorrhizal Camptotheca acuminata seedlings [J]. Chin J Plan Ecolo, 2010, 34(6): 687-694.
[11] SONG Rui-Qing, LI Xi-Mei, QI Jin-Yu. EFFECTS OF INOCULATION OF ECTOMYCORRHIZAL FUNGI ON THE SEEDLING GROWTH OF MONGOL SCOTCH PINE (PINUS SYLVESTRIS VAR. MONGOLICA) [J]. Chin J Plan Ecolo, 2008, 32(6): 1378-1385.
[12] ZHAO Xin, YAN Xiu-Feng. EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGI ON THE GROWTH AND ABSORPTION OF NITROGEN AND PHOSPHORUS IN CAMPTOTHECA ACUMINATA SEEDLINGS [J]. Chin J Plan Ecolo, 2006, 30(6): 947-953.
[13] LI De-Jun, MO Jiang-Ming, FANG Yun-Ting, LI Zhi-An. EFFECTS OF SIMULATED NITROGEN DEPOSITION ON BIOMASS PRODUCTION AND ALLOCATION IN SCHIMA SUPERBA AND CRYPTOCARYA CONCINNA SEEDLINGS IN SUBTROPICAL CHINA [J]. Chin J Plan Ecolo, 2005, 29(4): 543-549.
[14] CHEN Zhi-Gang, FAN Da-Yong, ZHANG Wang-Feng, XIE Zong-Qiang. EFFECTS OF GAP AND UNDERSTORY EVIRONMENTS ON THE REGENERATION OF QUERCUS ALIENA VAR. ACUTESERRATA AND FAGUS ENGLERIANA [J]. Chin J Plan Ecolo, 2005, 29(3): 354-360.
[15] QI Xin, CAO Kun-Fang, FENG Yu-Long. Photosynthetic Acclimation to Different Growth Light Environments in Seedlings of Three Tropical Rainforest Syzygium Species [J]. Chin J Plan Ecolo, 2004, 28(1): 31-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 44 .
[2] Wei Xie Chaoyin Yue Zhenghong Guo Zhipeng Dai Min Liu Wei Yao. Transient Expression of GUS Gene Controlled by Different Regulator Sequences of Tobacco[J]. Chin Bull Bot, 2007, 24(04): 452 -458 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 72 .
[4] . [J]. Chin Bull Bot, 1999, 16(05): 621 -624 .
[5] Tao Wang, Xurong Mei, Xiuli Zhong, Yuzhong Li, Zhengbing Zeng, Haiyan Wang, Lei Sun, Xu Xia. Phospholipase Dδ Mediates the Process of Cold Acclimation in Arabidopsis thaliana[J]. Chin Bull Bot, 2010, 45(05): 541 -547 .
[6] Tao Yao, Sulan Bai, Miaomiao Li, Yaochuan Zhang, Yikun He. DELLA Contribute to Tolerance to Nitric Oxide Stress in Arabidopsis Seedlings[J]. Chin Bull Bot, 2011, 46(5): 481 -488 .
[7] Liu Yan-ju;Li Cheng-sen and Wang Yu-fei. Review on Genus Metasequoia[J]. Chin Bull Bot, 1996, 13(03): 15 -22 .
[8] Jiang Gaoming, Han Xingguo, Lin Guanghui. Response of Plant Growth to Elevated CO2: A Review on the Chief Methods and Basic Conclusions Based on Experiments in the External Countries in Past Decade[J]. Chin J Plan Ecolo, 1997, 21(6): 489 -502 .
[9] LUAN Qing-Shan, SUN Jun, SONG Shu-Qun, SHEN Zhi-Liang, YU Zhi-Ming. CANONICAL CORRESPONDENCE ANALYSIS OF SUMMER PHYTOPLANKTON COMMUNITY AND ITS ENVIRONMENT IN THE YANGTZE RIVER ESTUARY, CHINA[J]. Chin J Plan Ecolo, 2007, 31(3): 445 -450 .
[10] Li Jun-qing, Gong Wei-guang. Characteristic Analysis of Nutrient Contents of Major Tree Species in Northeast China[J]. Chin J Plan Ecolo, 1991, 15(4): 380 -385 .