Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (7): 752-763.doi: 10.17521/cjpe.2017.0229

• Research Articles • Previous Articles     Next Articles

Phenotypic variations in seed and fruit traits of Liquidambar formosana populations

HE Qing-Hai, YANG Shao-Zong, LI Yin-Gang, SHEN Xin, LIU Xin-Hong*()   

  1. Zhejiang Academy of Forestry, Hangzhou 310023, China
  • Online:2018-03-08 Published:2018-07-20
  • Contact: Xin-Hong LIU E-mail:lsliuxh@163.com
  • Supported by:
    Supported by the Special Scientific Research of Forestry Public Welfare Profession of China(201404312);the Major Project of Agricultural (Forestry) Breeding of Zhejiang Province(2016C02056-10)

Abstract:

Aims Liquidambar formosanais a fast-growing and multipurpose native tree species in China. Our aim is to determine the phenotypic variations, adaption and distribution patterns of seed and fruit characteristics of L. formosana populations.

Methods Data for 10 phenotypic traits of seeds and fruits including fruit diameter, peduncle length, thousand kernel weight, seed length, seed width, seed wing length, seed wing width, seed width ratio, seed wing width ratio, ratio of seed length and seed wing length, were sampled from 36 natural L. formosana populations across China. Analysis of variance (ANOVA), correlation analysis, and regression analysis were used to analyze the phenotypic variations among and within populations.

Important findings Results showed that the mean phenotypic differentiation coefficient was 57.55%, which indicated that the phenotypic variation among populations was the main source of the phenotypic variation in L. formosana. The mean coefficient of variation was 15.83%, ranging from 10.05% to 24.31%, suggesting that the phenotypic variation of seeds and fruits was very plentiful. The coefficient of variation was different among populations. The mean coefficient of variation in Anfu was the highest (16.73%), while that of Jianyang was the lowest (11.48%). The pattern of geographic variation of most seed and fruit phenotypic traits was random. There was no significant correlation between the adjacent populations in phenotypic traits. The mean temperature in January, altitude and latitude played important roles in affecting the phenotypic traits. The length-width ratio of seeds decreased with the increase of altitude, which can be used to infer the altitude of the distribution of a population. Our results provide useful information for the collection of wild resources and the breeding of this economically important species.

Key words: Liquidambar formosana, seed traits, fruit characteristics, phenotypic variations, nature populations

Table 1

Geographic locations and main climatic factors for sampling sites of Liquidambar formosana populations"

取样地点
Sampling site
取样株数
No. of
individuals sampled
经度Longitude (E) 纬度Latitude
(N)
海拔Altitude
(m)
年平均气
温 AMAT
(℃)
1月平均气温 MAT in Jan (℃) 7月平均气温 MAT in July (℃) 无霜期
Frost-free season (d)
年降水量 AP (mm)
海南黎母山 Mt. Limu, Hainan 20 109.16° 18.89° 309 24.7 19.5 28.2 365 1 400.0
海南佳西 Jiaxi, Hainan 12 109.79° 19.27° 209 22.0 16.0 26.0 362 1 951.4
海南霸王岭 Mt. Bawangling, Hainan 9 109.28° 19.14° 250 24.3 18.4 28.8 365 1 395.0
广东紫金 Zijin, Guangdong 6 115.00° 23.59° 388 20.6 11.8 27.2 357 1 761.1
广东英德 Yingde, Guangdong 7 113.40° 24.45° 273 20.7 10.9 28.9 315 1 849.0
广西凭祥 Pingxiang, Guangxi1) 15 106.79° 22.21° 178 21.3 13.2 27.6 347 1 376.0
广西隆林 Longlin, Guangxi1) 13 105.62° 25.03° 1 390 19.1 10.0 25.5 331 1 422.8
广西融水 Rongshui, Guangxi1) 12 109.37° 25.18° 329 19.3 7.5 26.5 320 1 824.8
云南富宁 Funing, Yunnan1) 15 105.73° 24.13° 1 161 19.3 11.0 25.4 327 1 176.9
福建建阳 Jianyang, Fujian 17 117.93° 27.45° 288 17.7 8.9 37.5 255 1 742.0
福建长汀 Changting, Fujian 8 116.44° 25.83° 462 17.3 9.8 27.2 260 1 711.6
福建尤溪 Youxi, Fujian 17 112.89° 25.10° 1 032 17.7 8.0 26.6 264 1 600.0
福建华安 Hua’an, Fujian 8 117.45° 24.96° 140 20.9 18.5 33.9 320 1 598.7
浙江淳安 Chun’an, Zhejiang2) 10 118.77° 29.58° 146 17.0 5.0 28.9 263 1 450.0
浙江泰顺 Taishun, Zhejiang2) 8 119.70° 27.66° 489 16.1 5.7 27.5 242 1 980.6
浙江开化 Kaihua, Zhejiang2) 9 118.41° 29.08° 338 16.3 4.6 27.8 250 1 762.1
浙江丽水 Lishui, Zhejiang2) 15 119.99° 28.54° 259 18.0 7.3 22.9 257 1 399.6
浙江文成 Wencheng, Zhejiang2) 14 120.11° 27.88° 227 18.0 7.3 28.3 286 307.0
浙江桐庐 Tonglu, Zhejiang2) 20 119.67° 29.91° 77 16.5 4.1 28.8 253 1 462.0
浙江天台 Tiantai, Zhejiang2) 18 121.10° 29.11° 464 16.8 5.0 28.3 234 1 332.0
浙江舟山 Zhoushan, Zhejiang2) 18 122.24° 30.27° 0 16.2 5.4 28.4 305 927.3
江苏句容 Jurong, Jiangsu 16 119.31° 32.13° 19 15.1 2.0 27.8 229 1 000.0
江西安福 Anfu, Jiangxi 20 114.70° 27.62° 133 17.9 6.0 28.9 282 1 516.8
江西大余 Dayu, Jiangxi 22 114.52° 25.62° 267 18.4 7.5 27.6 301 1 591.5
湖南桑植 Sangzhi, Hunan 20 110.29° 29.44° 390 16.5 4.8 28.2 255 2 029.1
湖南隆回 Longhui, Hunan 14 111.12° 27.27° 520 17.0 5.1 28.1 281 1 427.5
湖北恩施 Enshi, Hubei 13 110.21° 30.68° 958 16.3 4.9 27.1 292 1 440.0
湖北罗田 Luotian, Hubei 11 115.43° 30.83° 223 16.4 3.6 28.5 228 1 292.6
四川广元 Guangyuan, Sichuan3) 8 105.64° 32.31° 977 16.2 5.2 26.2 270 1 186.0
贵州德江 Dejiang, Guizhou 21 108.17° 28.29° 855 16.0 5.0 26.3 295 1 229.6
贵州罗甸 Luodian, Guizhou1) 21 106.59° 25.32° 916 15.2 10.0 27.0 330 1 200.0
河南西峡 Xixia, Henan3) 6 111.75° 33.65° 940 15.1 1.5 27.1 236 881.0
陕西宁强 Ningqiang, Shaanxi3) 12 106.02° 33.05° 928 12.9 1.4 23.6 247 1 178.0
陕西安康 Ankang, Shaanxi3) 11 107.86° 32.18° 917 15.5 3.1 27.6 253 799.3
陕西镇巴 Zhenba, Shaanxi3) 13 108.00° 32.74° 688 13.7 -1.3 30.6 236 1 310.2
甘肃文县 Wenxian, Gansu3) 11 105.17° 32.77° 1 450 14.4 3.6 24.8 224 574.7

Table 2

The variance components of the seed and fruit traits of Liquidambar formosana and the phenotype differential coefficients of different groups"

种子与果实性状
Seed and fruit trait
方差分量
Variance component
方差分量百分比
Variance component percentage (%)
表型分化系数
Phenotype differentiation coefficient (%)
F
F value
种群间
Among populations
种群内
Within populations
随机误差
Random error
种群间
Among populations
种群内
Within populations
随机误差
Random error
种群间
Among
populations
种群内
Within
populations
果径 FD (mm) 2.948 0.771 0.001 79.25 20.71 0.04 79.28 38.93** 5.77**
果柄长 PL (mm) 28.770 31.515 0.033 47.70 52.25 0.06 47.72 27.37** 10.23**
种子千粒重 TKW (g) 0.011 0.043 0.001 20.32 78.29 1.39 20.61 6.92** 1.76
种子长 SL (mm) 0.160 0.218 0.000 42.33 57.66 0.01 42.33 63.48** 20.93**
种子宽 SW (mm) 0.001 0.014 0.000 8.09 91.87 0.05 8.09 18.33** 9.64**
种翅长 SWL (mm) 0.444 0.051 0.000 89.62 10.38 0.01 89.62 143.76** 8.53**
种翅宽 SWW (mm) 0.039 0.015 0.000 71.44 28.54 0.02 71.45 48.99** 8.00**
种子长宽比 SWR 0.057 0.060 0.000 48.66 51.30 0.04 48.68 22.36** 6.56**
种翅长宽比 SWWR 0.068 0.016 0.000 80.73 19.26 0.01 80.74 73.01** 8.03**
种长翅长比 SLSWLR 0.206 0.031 0.000 86.98 13.01 0.01 86.99 112.84** 8.39**

Table 3

Statistics and coefficients of variation of the seed and fruit traits of Liquidambar formosana"

种子与果实性状
Seed and fruit trait
平均值
Average
标准偏差
Standard deviation
最小值
Minimum
最大值
Maximum
极差
Range
变异系数
Coefficient of variation (%)
果径 FD (mm) 24.41 2.91 14.25 36.30 22.05 11.94
果柄长 PL (mm) 55.58 13.51 21.22 109.08 87.86 24.31
种子千粒重 TKW (g) 3.86 0.64 3.00 6.31 3.31 16.50
种子长 SL (mm) 7.49 0.75 4.91 10.23 5.32 10.05
种子宽 SW (mm) 1.87 0.22 1.06 2.77 1.71 11.89
种翅长 SWL (mm) 3.04 0.60 1.53 5.92 4.39 19.80
种翅宽 SWW (mm) 2.09 0.28 1.01 3.14 2.13 13.43
种子长宽比 SWR 4.04 0.54 2.19 7.31 5.12 13.31
种翅长宽比 SWWR 1.47 0.30 0.72 3.63 2.91 20.19
种长翅长比 SLSWLR 2.53 0.43 1.49 4.84 3.35 16.88

Table 4

Coefficients of variation of the seed and fruit traits of Liquidambar formosana within population"

变异系数 CV% 果径
FD
果柄长 PL 种子千
粒重 TKW
种子长 SL 种子宽 SW 种翅长 SWL 种翅宽 SWW 种子长
宽比 SWR
种翅长
宽比 SWWR
种长翅
长比 SLSWLR
平均变
异系数 Average CV (%)
海南黎母山 Mt. Limu Hainan 9.87 19.06 14.47 8.22 11.26 14.63 12.57 12.34 18.72 12.24 13.34
海南佳西 Jiaxi, Hainan 13.90 22.05 14.13 9.40 11.50 16.76 11.49 10.99 16.00 13.86 14.01
海南霸王岭 Mt. Bawangling, Hainan 7.18 24.65 13.15 9.44 14.05 18.00 13.86 14.91 17.32 14.99 14.76
广东紫金 Zijin, Guangdong 11.33 13.92 11.08 6.44 12.10 11.39 13.01 13.31 13.60 11.27 11.75
广东英德 Yingde, Guangdong 8.51 17.46 7.57 9.67 11.18 15.80 12.31 13.80 18.63 13.55 12.85
广西凭祥 Pingxiang, Guangxi 10.86 23.24 7.87 8.51 12.38 14.49 12.41 14.20 15.83 11.73 13.15
广西隆林 Longlin, Guangxi 9.44 19.74 9.15 11.96 12.29 16.88 11.10 13.94 18.16 13.93 13.66
广西融水 Rongshui, Guangxi 10.06 24.95 13.55 9.68 12.13 16.34 12.24 14.37 17.31 15.23 14.59
云南富宁 Funing, Yunnan 12.00 19.68 16.89 7.77 12.22 14.78 10.46 13.14 17.54 12.10 13.66
福建建阳 Jianyang, Fujian 8.94 20.49 8.51 6.99 10.04 12.05 11.65 10.15 15.63 10.31 11.48
福建长汀 Changting , Fujian 11.19 25.64 13.78 9.57 12.64 15.84 14.20 14.73 15.30 12.58 14.55
福建尤溪 Youxi, Fujian 8.93 16.15 14.40 7.81 10.32 16.49 12.96 11.27 19.72 13.05 13.11
福建华安 Hua’an, Fujian 14.34 23.63 22.17 9.20 10.27 14.52 11.15 10.77 14.35 10.23 14.06
浙江淳安 Chun’an, Zhejiang 12.96 20.34 22.44 10.77 10.98 16.39 11.16 13.80 18.22 12.39 14.95
浙江泰顺 Taishun, Zhejiang 10.63 17.59 10.97 9.19 11.26 18.75 11.65 12.63 16.49 14.46 13.36
浙江开化 Kaihua, Zhejiang 13.74 20.13 18.90 9.28 14.69 13.65 11.91 12.10 11.99 11.09 13.75
浙江丽水 Lishui, Zhejiang 13.18 21.77 11.97 9.21 12.24 13.73 10.42 12.65 14.94 11.62 13.17
浙江文成 Wencheng, Zhejiang 10.42 21.71 15.92 8.90 8.97 13.73 10.36 12.27 15.90 12.80 13.10
浙江桐庐 Tonglu, Zhejiang 8.42 20.17 12.97 9.12 10.55 14.62 12.93 11.18 14.54 12.71 12.72
浙江天台 Tiantai, Zhejiang 11.93 19.16 10.19 11.47 11.89 17.97 12.54 13.97 19.21 12.37 14.07
浙江舟山 Zhoushan, Zhejiang 12.85 18.51 16.70 10.00 10.91 14.04 11.32 13.26 17.31 12.50 13.74
江苏句容 Jurong, Jiangsu 10.00 22.44 20.21 7.54 10.85 13.86 11.01 11.71 15.09 13.05 13.58
江西安福 Anfu, Jiangxi 9.48 21.94 8.40 9.09 14.83 19.90 16.02 16.83 30.84 20.00 16.73
江西大余 Dayu, Jiangxi 11.28 33.26 15.66 9.32 10.18 17.29 13.45 12.52 16.75 14.98 15.47
湖南桑植 Sangzhi, Hunan 8.73 23.03 12.38 7.86 10.00 17.41 11.44 9.18 18.04 19.61 13.77
湖南隆回 Longhui, Hunan 11.70 25.58 12.41 10.10 11.63 18.18 13.74 11.19 14.12 12.86 14.15
湖北恩施 Enshi, Hubei 10.40 18.58 20.32 7.11 11.23 14.12 12.49 12.11 17.23 13.15 13.67
湖北罗田 Luotian, Hubei 9.76 21.13 8.43 9.29 11.52 19.45 13.32 12.23 16.80 14.85 13.68
四川广元 Guangyuan, Sichuan 10.16 31.02 15.95 11.60 12.97 13.96 13.88 13.68 16.20 12.52 15.19
贵州德江 Dejiang, Guizhou 12.54 24.13 16.34 10.78 12.56 17.52 12.33 13.09 19.72 14.66 15.37
贵州罗甸 Luodian, Guizhou 10.63 24.14 8.54 9.31 10.90 15.57 10.23 12.17 14.78 13.42 12.97
河南西峡 Xixia, Henan 9.04 29.28 13.93 9.06 7.73 12.33 13.11 13.66 15.38 10.48 13.40
陕西宁强 Ningqiang, Shaanxi 10.43 21.47 17.96 8.78 10.53 14.34 12.54 11.36 15.23 11.56 13.42
陕西安康 Ankang, Shaanxi 8.05 19.95 7.91 7.08 9.00 14.78 12.01 10.86 16.20 12.05 11.79
陕西镇巴 Zhenba, Shaanxi 10.72 20.61 15.15 7.12 11.78 14.16 11.99 12.04 17.69 13.11 13.44
甘肃文县 Wenxian, Gansu 9.19 30.25 14.94 10.22 11.45 17.83 11.00 11.30 17.07 13.78 14.70

Table 5

Correlation coefficients between the seed and fruit traits of Liquidambar formosana and geographical and environmental variables"

相关系数
Correlation coefficients
果柄长
PL (mm)
果径
FD (mm)
千粒重
TKW (g)
种子长
SL (mm)
种子宽
SW (mm)
种翅长
SWL (mm)
种翅宽
SW (mm)
种子长宽比
SWR
种翅长宽比
SWWR
种长翅长比
SLSWLR
果柄长 PL 1.00 0.12 0.44** 0.46** 0.46** 0.22 0.48** 0.01 -0.04 -0.06
果径 FD 1.00 0.15 0.32* -0.08 0.15 0.01 0.36* 0.19 -0.02
种子千粒重 TKW 1.00 0.37* 0.51** 0.04 0.48** -0.13 -0.22 0.10
种子长 SL 1.00 0.34* 0.57** 0.49** 0.57** 0.33* -0.28*
种子宽 SW 1.00 0.02 0.73** -0.58** -0.42** 0.09
种翅长S WL 1.00 0.43** 0.49** 0.83** -0.94**
种翅宽 SWW 1.00 -0.21 -0.15 -0.30*
种子长宽比 SWR 1.00 0.66** -0.30*
种翅长宽比 SWWR 1.00 -0.84**
种长翅长比 SLSWLR 1.00
经度 Longitude (°N) -0.20 0.09 -0.12 0.02 -0.23 -0.01 -0.17 0.19 0.08 0.03
纬度 Latitude (°E) 0.30* 0.12 0.29* 0.10 0.24 -0.05 0.36* -0.15 -0.27 0.13
海拔 Altitude (m) 0.23 -0.09 0.24 -0.13 0.33* -0.08 0.36* -0.40** -0.30* 0.05
年平均气温 AMAT (℃) -0.26 -0.16 -0.25 -0.04 -0.22 0.11 -0.35* 0.19 0.34* -0.18
1月平均气温
MAT in Jan. (℃)
-0.37* -0.08 -0.23 -0.05 -0.16 0.16 -0.27 0.11 0.33* -0.24
7月平均气温
MAT in July (℃)
-0.18 -0.01 -0.11 0.15 -0.19 0.18 -0.11 0.27 0.27 -0.13
无霜期 frost-free season (d) -0.30* -0.20 -0.21 -0.18 -0.13 0.04 -0.24 -0.02 0.20 -0.16
年降水量 AP (mm) -0.21 0.10 -0.17 0.07 -0.25 0.05 -0.23 0.28* 0.20 -0.05

Table 6

Best model for the effects of geographic and climatic factors on seed and fruit traits evaluated by stepwise regressions"

种子与果实
性状
Seed and fruit trait
回归方程
Regression equations
R2 F p 容忍度
Tolerance
果径 FD (Y1) Y1 = -0.101 X1 + 25.022 0.135 3 5.322 0.027 1
种子宽
SW (Y2)
Y2 = 0.00006 X2 + 1.8379 0.111 7 4.274 0.046 1
种翅宽
SWW (Y3)
Y3 = 0.0123 X3 + 1.7559 0.129 5 5.058 0.031 1
种子长宽比 SWR (Y4) Y4 = -0.0002 X2 + 4.1477 0.155 8 6.275 0.017 1
种翅长宽比 SWWR (Y5) Y5 = 0.0203 X1 + 1.1182 0.118 6 4.282 0.046 1

Table 7

The eigenvalues and cumulative variance of different principal components"

成分
Components
初始特征值
Initial eigenvalue
主成分特征值
Principal component eigenvalue
特征值
Eigenvalues
方差贡
献率
Variance contribution rate (%)
累积方差
贡献率Cumulative variance contribution rate (%)
特征值
Eigenvalues
方差贡
献率
Variance contribution rate (%)
累积方差
贡献率Cumulative variance contribution rate (%)
1 3.598 35.980 35.980 3.598 35.980 35.980
2 3.035 30.349 66.330 3.035 30.349 66.330
3 1.389 13.888 80.217 1.389 13.888 80.217
4 0.659 6.593 86.810
5 0.536 5.362 92.173

Fig. 1

The coefficients of variation (CV) of the seed and fruit traits of different Liquidambar formosana populations in different regions (mean ± SE). PL, peduncle long; TKW, thousand kernel weight; SL, seed length; SWL, seed wing length; SWW, seed wing width. Different letters indicated that the differences were significant at the level of p = 0.05."

Fig. 2

The seed length of Liquidambar formosana from different populations (mean ± SE). 1), southwest L. formosana populations; 2), southeast L. formosana populations; 3), northwest L. formosana populations. Different lowercase letters indicate significant differences at the level of p = 0.05."

[1] Bai GH, Zhang YR, Liu YJ, Xin HY, Yan JB, Peng HR, Zhang JX, Li JS ( 2009). Application of ImageJ analysis software in measuring kernel size of maize seeds. Journal of Maize Sciences, 17(1), 147-151.
[ 白光红, 张义荣, 刘弋菊, 邢鸿雁, 严建兵, 彭惠茹, 章建新, 李建生 ( 2009). ImageJ图象处理软件在测量玉米籽粒大小中的应用. 玉米科学, 17(1), 147-151.]
[2] Cui C, Zhou QY, Wang LJ, Tan ZF, Gong J, Xie XR ( 2016). Main composition analysis and comprehensive evaluation of the main agronomic traits of Flax germplasm. Journal of Southwest University (Natural Science Edition), 38(12), 10-18.
[ 崔翠, 周清元, 王利鹃, 谭尊飞, 龚静, 谢旭容 ( 2016). 亚麻种质主要农艺性状主成分分析与综合评价. 西南大学学报(自然科学版), 38(12), 10-18.]
[3] Diao SF, Shao WH, Jiang JM, Dong RX, Sun HG ( 2014). Phenotypic diversity in natural populations of Sapindus mukorossi based on fruit and seed traits. Acta Ecologica Sinica, 34, 1451-1460.
doi: 10.5846/stxb201306211756
[ 刁松锋, 邵文豪, 姜景民, 董汝湘, 孙洪刚 ( 2014). 基于种实性状的无患子天然群体表型多样性研究. 生态学报, 34, 1451-1460.]
doi: 10.5846/stxb201306211756
[4] Gu YJ, Luo JX, Wu YW, Cao XJ ( 2009). Phenotypic diversity in natural populations ofPicea balfouriana in Sichuan, China. Journal of Plant Ecology (Chinese Version), 33, 291-301.
[ 辜云杰, 罗建勋, 吴远伟, 曹小军 ( 2009). 川西云杉天然种群表型多样性. 植物生态学报, 33, 291-301.]
[5] Guan JJ, Yu H, He L, He YF, Zhang SG, Peng SB, Fan YH ( 2011). Study on seed phenotype variation of Dendrocnide urentissima group. Journal of Southwest Agriculture , 24, 1086-1094.
[ 管俊娇, 虞泓, 何露, 和云峰, 张时刚, 彭少波, 范源洪 ( 2011). 小桐子居群种子表型变异研究. 西南农业学报, 24, 1086-1094.]
[6] Hu JZ, Tian Q, Lu XA ( 2007). Relationship between changes of the pigments content and leaf color changing in Phoebe chekiangensis.Journal of Northwest A&F University (Natural Science Edition), 35(10), 219-223.
doi: 10.3321/j.issn:1671-9387.2007.10.042
[ 胡敬志, 田旗, 鲁心安 ( 2007). 枫香叶片色素含量变化及其与叶色变化的关系. 西北农林科技大学学报: 自然科学版, 35(10), 219-223.]
doi: 10.3321/j.issn:1671-9387.2007.10.042
[7] Ji MF, Zhang XW, Han J, Ding DL ( 2013). Phenotypic diversity of cone and seed in natural Pinus tabuliformis populations in China. Acta Botanica Boreali-Occidentalia Sinica , 33, 1898-1905.
[ 姬明飞, 张晓玮, 韩瑾, 丁东粮 ( 2013). 油松天然群体的种实性状表型多样性研究. 西北植物学报, 33, 1898-1905.]
[8] Ji YW, Liu YM, Liu YM, Yan C, Liu HD ( 2015). Antioxidant activity of Liquidambar formosana leaves and its storage and freshness of loquat. Food Science , 36(4), 226-231.
doi: 10.7506/spkx1002-6630-201504045
[ 纪雨薇, 刘亚敏, 刘玉民, 阎聪, 刘宏丁 ( 2015). 枫香叶分离物抗氧化活性及对枇杷的贮藏保鲜效果. 食品科学, 36(4), 226-231.]
doi: 10.7506/spkx1002-6630-201504045
[9] Jing GZ, Ren HD, Yao XH, Wang KL, Yang SP ( 2013). Study on phenotypic diversity of seed and fruit in natural populations ofCamellia reticulate.Journal of Nanjing Forestry University (Natural Science Edition), 37(6), 53-58.
doi: 10.3969/j.issn.1000-2006.2013.06.011
[ 靳高中, 任华东, 姚小华, 王开良, 杨水平 ( 2013). 滇西腾冲红花油茶天然居群种实表型性状变异分析. 南京林业大学学报(自然科学版), 37(6), 53-58.]
doi: 10.3969/j.issn.1000-2006.2013.06.011
[10] Leng HN, Chen YT, Rao LB, Duan HP, Shi X, Huang XF ( 2009). Response difference of NRA, shoot/root ratio and biomass of Liquidambar formosana provenances to different nitrogen supplies.Forest Research, 22, 190-195.
doi: 10.3321/j.issn:1001-1498.2009.02.007
[ 冷华妮, 陈益泰, 饶龙兵, 段红平, 施翔, 黄秀凤 ( 2009). 枫香种源生物量和NRA对供氮水平的响应差异. 林业科学研究, 22, 190-195.]
doi: 10.3321/j.issn:1001-1498.2009.02.007
[11] Li B, Gu WC, Lu BM ( 2002). A study on phenotypic diversity of seeds and cones characteristic in Pinus bungeana. Biodiversity Science, 10, 181-188.
doi: 10.3321/j.issn:1005-0094.2002.02.008
[ 李斌, 顾万春, 卢宝明 ( 2002). 白皮松天然群体种实性状表型多样性研究. 生物多样性, 10, 181-188.]
doi: 10.3321/j.issn:1005-0094.2002.02.008
[12] Li N, Liu XH, Li YG, Li HB, Sheng WT, Hui GY, Zheng YQ ( 2012). Genetic diversity in natural populations of Styrax tonkinensis.Scientia Silvae Sinicae, 48(11), 49-56.
doi: 10.11707/j.1001-7488.20121108
[ 李楠, 柳新红, 李因刚, 李海波, 盛炜彤, 惠刚盈, 郑勇奇 ( 2012). 白花树天然群体的遗传多样性. 林业科学, 48(11), 49-56.]
doi: 10.11707/j.1001-7488.20121108
[13] Li W, Lin FR, Zheng YQ, Li B ( 2013). Phenotypic diversity of pods and seeds in natural populations of Gleditsia sinensis in southern China. Chinese Journal of Plant Ecology , 37, 61-69.
[ 李伟, 林富荣, 郑勇奇, 李斌 ( 2013). 皂荚南方天然群体种实表型多样性. 植物生态学报, 37, 61-69.]
[14] Li XW, Chen QX, Zheng J ( 2011). Liquidambar formosana leaf color change and the relationship between the environmental factors. Journal of Zhejiang Agricultural Sciences, ( 2), 279-282.
doi: 10.3969/j.issn.0528-9017.2011.02.021
[ 李效文, 陈秋夏, 郑坚 ( 2011). 枫香秋叶色变化及环境因子的关系. 浙江农业科学, ( 2), 279-282.]
doi: 10.3969/j.issn.0528-9017.2011.02.021
[15] Li YG, Liu XH, Ma JW, Shi CG, Zhu GQ ( 2014). Phenotypic variations in populations of Phoebe chekiangensis.Chinese Journal of Plant Ecology, 38, 1315-1324.
doi: 10.3724/SP.J.1258.2014.00126
[ 李因刚, 柳新红, 马俊伟, 石从广, 朱光权 ( 2014). 浙江楠种群表型变异. 植物生态学报, 38, 1315-1324.]
doi: 10.3724/SP.J.1258.2014.00126
[16] Li YQ, Li YC, Wu ZZ ( 2013). Variation in phenotype characters and starch content of Quercus mongolica Fisch seed from different provenances. Forest Research , 26, 528-532.
[ 厉月桥, 李迎超, 吴志庄 ( 2013). 不同种源蒙古栎种子表型性状与淀粉含量的变异分析. 林业科学研究, 26, 528-532.]
[17] Liu XH, Li YG, Zhao X, Shi CG, Sheng WT ( 2011). Natural group phenotype diversity of Styrax tonkinensis. Forestry Science Research, 24, 694-700.
[ 柳新红, 李因刚, 赵勋, 石从广, 盛炜彤 ( 2011). 白花树天然群体表型多样性研究. 林业科学研究, 24, 694-700.]
[18] Meng XD ( 2003). Geographic Variation in Seedling Stage and Genetic Polymorphism of Liquidambar formosana. Master degree dissertation, Nanjing Forestry University,Nanjing.
[ 孟现东 ( 2003). 枫香苗期地理变异及遗传多态性研究. 硕士学位论文, 南京林业大学, 南京.]
[19] Song JS, Dang ZH, Zhang JP, Wang LM, Li WJ, Zhang Y, Chen F, Zhang Q ( 2015). Oil Linum usitatissimum variety resources agronomic traits of principal components and cluster analysis. Journal of Southwest Agricultural , 28, 492-492.
doi: 10.16213/j.cnki.scjas.2015.02.009
[ 宋军生, 党占海, 张建平, 王利民, 李闻娟, 张瑜, 陈芳, 张琼 ( 2015). 油用亚麻品种资源农艺性状的主成分及聚类分析. 西南农业学报, 28, 492-497.]
doi: 10.16213/j.cnki.scjas.2015.02.009
[20] Su SP, Li Y, Chong PF, Gao Q ( 2013). Correlati on analysis of phenotypic traits of Reaumuria soongorica seed in different natural populations in the Gansu Corridor. Acta Prataculturae Sinica , 22(1), 87-94.
doi: 10.11686/cyxb20130111
[ 苏世平, 李毅, 种培芳, 高茜 ( 2013). 河西走廊不同红砂天然群体种子表型性状相关性研究. 草业学报, 22(1), 87-94.]
doi: 10.11686/cyxb20130111
[21] Sun HJ, Wang SH, Chen YT ( 2012). Response to water logging stress of different five Liquidambar formosana provenances.Journal of Nanjing Forestry University (Natural Science Edition), 36(3), 43-48.
[ 孙海菁, 王树凤, 陈益泰 ( 2012). 不同枫香种源对淹水胁迫的响应. 南京林业大学学报(自然科学版), 36(3), 43-48.]
[22] Sun RX, Lin FR, Huang P, Zheng YQ ( 2016). Moderate genetic diversity and genetic differentiation in the relict tree Liquidambar formosana Hance revealed by genetic simple sequence repeat markers. Front Plant Science, 7, 1411. DOI: 10.3389/fpls.2016.01411.
doi: 10.3389/fpls.2016.01411 pmid: 5030344
[23] Sun RX, Zheng YQ, Zhang CH, He Y, Zong YC, Yu XD ( 2011). The study on phenotype variation of seed phenoltypes in different groups of Sophora japonica. Journal of Hebei Agricultural University, 34(3), 65-70.
doi: 10.3969/j.issn.1000-1573.2011.03.014
[ 孙荣喜, 郑勇奇, 张川红, 何燕, 宗亦臣, 于雪丹 ( 2011). 不同群体国槐种子表型变异研究. 河北农业大学学报, 34(3), 65-70.]
doi: 10.3969/j.issn.1000-1573.2011.03.014
[24] Wang F ( 2010). Persistent and advanced reddening of sweet gum leaves after major veins severing. Journal of Forestry Research, 21, 465-468.
doi: 10.1007/s11676-010-0099-7
[25] Wang HF, Lü GH, Zhou YZ, Cao J ( 2017). Effects of functional diversity and functional redundancy on the stability of desert plant communities under different water and salt gradients. Acta Ecologica Sinica, 37, 7928-7937.
doi: 10.5846/stxb201610192139
[ 王恒方, 吕光辉, 周耀治, 曹靖 ( 2017). 不同水盐梯度下功能多样性和功能冗余对荒漠植物群落稳定性的影响. 生态学报, 37, 7928-7937.]
doi: 10.5846/stxb201610192139
[26] Wang J, Yang ZL, Yang X, He ZS ( 2012). Effects of orientation and canopy oil deformation of fruits and seeds of Phoebe chekiangensis.Journal of Ecology and Rural Environment, 28, 385-388.
[ 王洁, 杨志玲, 杨旭, 何正松 ( 2012). 方位及冠层对厚朴果实和种子形态变异的影响. 生态与农村环境学报, 28, 385-388.]
[27] Wen CH, Chu FH ( 2017). A R2R3-MYB gene LfMYB113 is responsible for autumn leaf coloration in Formosan sweet gum (Liquidambar formosana Hance). Plant & Cell Physiology, 58, 508-521.
doi: 10.1093/pcp/pcw228 pmid: 28115495
[28] Wen CH, Lin SS, Shih-Shun, Chu FH ( 2015). Transcriptome analysis of a subtropical deciduous tree: Autumn leaf senescence gene expression profile of Formosan gum. Plant & Cell Physiology, 56, 163-174.
doi: 10.1093/pcp/pcu160 pmid: 25392065
[29] Xie QJ, Xu XY, Zheng JR, Zhong YT ( 2015). Study on the effect of Liquidambar formosana leaf extract on K562 cells. Journal of Chinese Medicinal Materials , 38, 1493-1495.
[ 谢琼珺, 徐仙赟, 郑金荣, 钟有添 ( 2015). 枫香树叶提取物对K562细胞作用的研究. 中药材, 38, 1493-1495.]
[30] Xu Y, Deng LL, Zhou L, Cai NH, Luo YR, Li DL, Duan AA, Xu YL ( 2015). Seeds and cones phenotypic variation among populations of Pinus yunnanensis at different altitudes. Seed , 34(11), 70-79.
doi: 10.16590/j.cnki.1001-4705.2015.11.070
[ 徐杨, 邓丽丽, 周丽, 蔡年辉, 罗一然, 李德龙, 段安安, 许玉兰 ( 2015). 云南松不同海拔天然群体种实性状表型多样性研究. 种子, 34(11), 70-79.]
doi: 10.16590/j.cnki.1001-4705.2015.11.070
[31] Yan C, Liu YM, Liu YM, Xu NT, Zhou AJ ( 2013). Effects of treatment with secondary metabolic compounds of Liquidambar formosana leaves on post-harvest physiological and biochemical characteristics of plum fruits( Prunus salicina).Food Science, 34(24), 268-272.
doi: 10.7506/spkx1002-6630-201324056
[ 阎聪, 刘玉民, 刘亚敏, 徐娜婷, 周安静 ( 2013). 枫香叶次生代谢物对李采后品质及生理特性的影响. 食品科学, 34(24), 268-272.]
doi: 10.7506/spkx1002-6630-201324056
[32] Yang J ( 1991). Infraspecific variation in plant and the exploring methods. Journal of Wuhan Botanical Research, 9, 185-195.
[ 杨继 ( 1991). 植物种内形态变异的机制及其研究方法. 武汉植物学研究, 9, 185-195.]
[33] Yang L, Shen HL, Liang LD, Cui XT, Wang AZ ( 2009). Phenotypic diversity of the fruit and seed of wild Sorbus pohuashanensis in different growing areas. Journal of Northeast Forestry University, 37(2), 8-10.
doi: 10.3969/j.issn.1000-5382.2009.02.004
[ 杨玲, 沈海龙, 梁立东, 崔晓涛, 王爱芝 ( 2009). 不同产区野生花楸果实和种子的表型多样性. 东北林业大学学报, 37(2), 8-10.]
doi: 10.3969/j.issn.1000-5382.2009.02.004
[34] Zhang Q, Xue JH, Liu CG ( 2011). Effects of complex pollution of CTAB and Cd 2+ on the growth of Chinese sweetgum seedlings . Acta Ecologica Sinica, 31, 5824-5831.
doi: 10.1002/etc.434
[35] Zhao XY, Wang JH, Zhang JF, Zhang SG, Zhang JG, Ma JW ( 2008). Study on phenotypic traits and germination characters of four taxons of Catalpa ovata genus seed.Journal of Northwest A&F University (Natural Science Edition), 36(12), 149-154.
doi: 10.3321/j.issn:1671-9387.2008.12.025
[ 赵曦阳, 王军辉, 张金凤, 张守攻, 张建国, 马建伟 ( 2008). 梓树属4个种种子表型性状和发芽特性的研究. 西北农林科技大学学报(自然科学版), 36(12), 149-154.]
doi: 10.3321/j.issn:1671-9387.2008.12.025
[36] Zhou LY, Wang YQ, Zhang L, Hu ZM ( 2009). Quantitative classification of phenotypic characters of 46 species in Rhododendron. Scientia Silvae Sinicae, 45(8), 67-75.
doi: 10.3321/j.issn:1001-7488.2009.08.012
[ 周兰英, 王永清, 张丽, 胡泽明 ( 2009). 46种杜鹃花属植物表型性状的数量分类. 林业科学, 45(8), 67-75.]
doi: 10.3321/j.issn:1001-7488.2009.08.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[10] Xiaofen Sun;Yu Chen;Junsong Pan;Yuliang Wang;Kexing Sun;Kexuan Tang*;Run Cai*. Correlation and Path Analyses of Vindoline with Major Agronomic Traits in Catharanthus roseus[J]. Chin Bull Bot, 2009, 44(01): 96 -102 .