植物生态学报 ›› 2026, Vol. 50 ›› Issue (1): 1-.DOI: 10.17521/cjpe.2024.0288

• • 上一篇    

光合响应模型与理论指导的神经网络(TgNN)融合的多因素光合速率预测模型

苏晨飞, 田慰, 张楠, 唐龙, 赵宇玮, 王耀   

  1. 西安交通大学, 陕西 710115 中国
  • 收稿日期:2024-08-23 修回日期:2025-02-20 出版日期:2026-01-30 发布日期:2026-02-13

Multi-factor photosynthetic rate prediction model by fusion of photosynthetic response model and theory-guided neural network (TgNN)

SU Chen-Fei, TIAN Wei, ZHANG Nan, TANG Long, ZHAO Yu-Wei, WANG Yao   

  1. , Xi'an Jiaotong University 710115, China
  • Received:2024-08-23 Revised:2025-02-20 Online:2026-01-30 Published:2026-02-13

摘要: 近年来, 由于温室气体的大量排放, 极端天气事件的频发已对植物光合作用产生显著影响。光合作用不仅直接关系到植物的生长发育, 其光合速率更是评估植物健康状况与预测未来全球碳循环动态的关键指标。此外, 净光合速率还是设施农业环境调控中的重要参数。因此, 准确预测植物光合速率对农业、林业和草业的科学发展具有重要意义。该研究首先使用光合测量仪获取不同环境下芦苇(Phragmites australis)和互花米草(Spartina alterniflora)的光合数据, 随后拟合了7种单因素光合响应模型, 并基于理论指导的神经网络(TgNN)建立了多因素光合速率预测模型。研究结果表明, 现有的单因素光响应模型虽取得不错的拟合效果, 但其理论研究的价值有限; 而基于TgNN建立的多因素光合速率预测模型展现了较好的预测能力和泛化能力。本研究为构建准确、可靠的植物光合速率预测模型提供了一种新的方法和思路。

关键词: 光合预测模型, 神经网络, 光响应模型, 灰箱模型

Abstract: Aim: In recent years, the ever increasing greenhouse gas (GHG) emissions and extreme weather events had significantly impacted plant photosynthesis. Photosynthesis is closely related to plant growth and development, with photosynthetic rate is a key indicator of plant health, which has been widely used in predicting global carbon cycle dynamics. The net photosynthesis rate is also an important parameter in calibrating agriculture facility. Therefore, accurate prediction of plant photosynthesis rate is important to agriculture, forestry and grassland research. Methods: We used photosynthesis meter to obtain photosynthetic data of common reed (Phragmites australis) and smooth cordgrass (Spartina alterniflora) under different environmental conditions, we then fitted seven single-factor photosynthetic response models, and developed a multifactorial photosynthetic rate prediction model using theoretically-guided neural network (TgNN). Important findings: The multifactor photosynthetic model outperformed single-factor photosynthetic response models. All existing single-factor light response models show good performances in fitting photosynthetic data but lack theoretical research value; whereas the multifactor photosynthetic model based on TgNN shows good predictability and generality. Our contribution provides a new avenue for calibrating more accurate and reliable models for predicting plant photosynthetic rate.

Key words: photosynthetic prediction model, neural network, photoresponse model, grey box model