植物生态学报 ›› 2026, Vol. 50 ›› Issue (1): 0-.DOI: 10.17521/cjpe.2024.0186

• •    下一篇

基于不同生育阶段冠层光谱和碳通量的水稻产量估算

徐恩相, 周蕾, 章晓炜, 张国萍, 仲杜伟, 黄智, 刘派, 迟永刚   

  1. 浙江师范大学地理与环境科学学院, 321004
  • 收稿日期:2024-06-03 修回日期:2025-02-11 出版日期:2026-01-30 发布日期:2026-02-14

Estimation of rice yield based on canopy spectra and carbon flux in diverse growth phases

Xu Enxiang, Zhou Lei, Zhang Xiaowei, Zhang Guoping, Zhong Duwei, Huang Zhi, Liu Pai, Chi Yonggang   

  1. , 321004,
  • Received:2024-06-03 Revised:2025-02-11 Online:2026-01-30 Published:2026-02-14

摘要: 准确估算作物产量对于农业政策制定具有重要意义。植被冠层光谱和碳通量是监测作物生长状态的主要数据, 然而比较两者在预测产量方面的性能的研究较少。该研究以同步观测的植被冠层反射光谱和气体交换为基础数据, 探索各类参数预测水稻(Oryza sativa)籽粒产量和地上生物量的性能。结果表明, 植被反射指数在估算水稻籽粒产量和地上生物量时的表现优于碳通量参数, 其中最优估算参数为植被近红外反射率(NIRv); 营养生长阶段是水稻籽粒产量和地上生物量的最优估算阶段。研究结果可为基于遥感数据和地面通量数据的农田产量估算提供指导。

关键词: 植被冠层反射指数, 籽粒产量, 地上生物量, 植被近红外反射率, 日光诱导叶绿素荧光

Abstract: Aims Accurate estimation of crop yield is important for agricultural policy formulation. Vegetation canopy reflectance spectra and carbon fluxes are the primary data for monitoring crop growth status. However, there are fewer studies comparing their performance in predicting crop yield. Methods Here, we explored the capability of various parameters to predict rice (Oryza sativa) grain yield and aboveground biomass using synchronized observations of vegetation canopy reflectance spectra and gas exchange. Important findings Results showed that vegetation reflectance index outperformed carbon flux parameters in estimating rice grain yield and aboveground biomass, in which the optimal estimation parameter was the near-infrared reflectance of vegetation (NIRv). The vegetative phase was the optimal estimation phase of rice grain yield and aboveground biomass. Our results could provide critical guidances for cropland yield estimation based on remote sensing data and ground flux data.

Key words: vegetation canopy reflectance index, grain yield, aboveground biomass, near-infrared reflectance of vegetation, solar-induced chlorophyll fluorescence