植物生态学报 ›› 2011, Vol. 35 ›› Issue (6): 632-640.DOI: 10.3724/SP.J.1258.2011.00632
高艳1, 田秋英2,*(), 石凤翎1,*(
), 李凌浩2, 张文浩2
收稿日期:
2011-02-28
接受日期:
2011-04-20
出版日期:
2011-02-28
发布日期:
2011-06-30
通讯作者:
田秋英,石凤翎
作者简介:
sfl0000@126.com
GAO Yan1, TIAN Qiu-Ying2,*(), SHI Feng-Ling1,*(
), LI Ling-Hao2, ZHANG Wen-Hao2
Received:
2011-02-28
Accepted:
2011-04-20
Online:
2011-02-28
Published:
2011-06-30
Contact:
TIAN Qiu-Ying,SHI Feng-Ling
摘要:
土壤有效磷(P)含量低是限制植物生长的主要因素之一。根形态变化和根系大量分泌以柠檬酸为主的有机酸是植物适应土壤P素缺乏的重要机制。以广泛分布于我国北方的重要豆科牧草黄花苜蓿(Medicago falcata)和豆科模式植物蒺藜苜蓿(M. truncatula)为材料, 采用砂培方法, 研究了低P胁迫对其植株生长、根系形态和柠檬酸分泌的影响, 对比了两种苜蓿适应低P胁迫的不同策略。结果表明: 1)低P处理显著抑制了蒺藜苜蓿与黄花苜蓿的地上部生长, 而对地下部生长影响较小, 从而导致根冠比增加。2)低P胁迫显著降低黄花苜蓿的总根长和侧根长, 而对蒺藜苜蓿的上述根系形态指标没有显著影响。3)低P胁迫促进两种苜蓿根系的柠檬酸分泌, 无论是在正常供P还是低P胁迫条件下, 黄花苜蓿根系分泌柠檬酸量显著高于蒺藜苜蓿根系。上述结果表明, 黄花苜蓿和蒺藜苜蓿对低P胁迫的适应策略不同, 低P胁迫下, 黄花苜蓿主要通过根系大量分泌柠檬酸, 活化根际难溶态P来提高对P的吸收, 而蒺藜苜蓿维持较大的根系是其适应低P胁迫的主要策略。
高艳, 田秋英, 石凤翎, 李凌浩, 张文浩. 黄花苜蓿与蒺藜苜蓿对土壤低磷胁迫适应策略的比较研究. 植物生态学报, 2011, 35(6): 632-640. DOI: 10.3724/SP.J.1258.2011.00632
GAO Yan, TIAN Qiu-Ying, SHI Feng-Ling, LI Ling-Hao, ZHANG Wen-Hao. Comparative studies on adaptive strategies of Medicago falcata and M. truncatula to phosphorus deficiency in soil. Chinese Journal of Plant Ecology, 2011, 35(6): 632-640. DOI: 10.3724/SP.J.1258.2011.00632
图1 黄花苜蓿和蒺藜苜蓿在正常供磷(+P, 500 μmol·L-1)和低磷(-P, 5 μmol·L-1)条件下的地上、地下生物量和根冠比(平均值±标准误差, n = 4)。不同字母表示物种之间和处理间差异显著(p < 0.05)。
Fig. 1 Biomass of shoots and roots, and shoot/root ratio in Medicago falcata and M. truncatula under supply of normal (+P, 500 μmol·L-1) and low P (-P, 5 μmol·L-1) (mean ± SE, n = 4). Different letters indicate significant difference between species and treatments at p < 0.05.
植物种 Species | 供P水平 P level | 地上P含量 Shoot P concentration (mg·g-1 DW) | 地下P含量 Root P concentration (mg·g-1 DW) | 植株P含量 Plant P concentration (mg·g-1 DW) | P累积量 Accumulative P (μg·plant-1) |
---|---|---|---|---|---|
黄花苜蓿 M. falcata | + P - P | 4.837 ± 0.060a 1.157 ± 0.067b | 5.679 ± 0.153a 1.631 ± 0.043c | 5.43 ± 0.16a 1.45 ± 0.05c | 97.72 ± 2.07b 12.50 ± 0.77d |
蒺藜苜蓿 M. truncatula | + P - P | 4.260 ± 0.272a 1.130 ± 0.023b | 3.909 ± 0.202b 1.796 ± 0.021c | 4.02 ± 0.23b 1.26 ± 0.02c | 124.11 ± 5.47a 26.47 ± 0.56c |
表1 正常供磷(+P, 500 μmol·L-1)和低磷(-P, 5 μmol·L-1)条件下黄花苜蓿和蒺藜苜蓿地上、地下、整株P含量和P累积量的比较(平均值±标准误差, n = 4)
Table 1 P contents in shoots, roots, whole plants and accumulative amounts of P in Medicago falcata and M. truncatula under conditions of normal (+P, 500 μmol·L-1) and low P (-P, 5 μmol·L-1 ) supply (mean ± SE, n = 4)
植物种 Species | 供P水平 P level | 地上P含量 Shoot P concentration (mg·g-1 DW) | 地下P含量 Root P concentration (mg·g-1 DW) | 植株P含量 Plant P concentration (mg·g-1 DW) | P累积量 Accumulative P (μg·plant-1) |
---|---|---|---|---|---|
黄花苜蓿 M. falcata | + P - P | 4.837 ± 0.060a 1.157 ± 0.067b | 5.679 ± 0.153a 1.631 ± 0.043c | 5.43 ± 0.16a 1.45 ± 0.05c | 97.72 ± 2.07b 12.50 ± 0.77d |
蒺藜苜蓿 M. truncatula | + P - P | 4.260 ± 0.272a 1.130 ± 0.023b | 3.909 ± 0.202b 1.796 ± 0.021c | 4.02 ± 0.23b 1.26 ± 0.02c | 124.11 ± 5.47a 26.47 ± 0.56c |
图2 黄花苜蓿和蒺藜苜蓿在正常供磷(+P, 500 μmol·L-1)和低磷(-P, 5 μmol·L-1)条件下的主根长、侧根长、侧根密度和总根长(平均值±标准误差, n = 4)。不同字母表示物种之间和处理间差异显著(p < 0.05)。
Fig. 2 Primary root length, lateral root length, lateral root density and total root length of Medicago falcata and M. truncatula under supply of normal (+P, 500 μmol·L-1) and low P (- P, 5 μmol·L-1) (mean ± SE, n = 4). Different letters indicate significant difference between species and treatments at p < 0.05.
植物种 Species | 供磷水平 P level | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 比根长 Specific root length (cm·g-1 DW) |
---|---|---|---|---|
黄花苜蓿 M. falcata | +P | 13.74 ± 2.39a | 0.104 ± 0.012b | 32.36 ± 5.07a |
-P | 6.40 ± 0.67b | 0.053 ± 0.003c | 19.51 ± 2.52b | |
蒺藜苜蓿 M. truncatula | +P | 18.43 ± 2.61a | 0.148 ± 0.021a | 15.47 ± 2.80b |
-P | 14.50 ± 1.43a | 0.116 ± 0.011ab | 13.39 ± 1.79b |
表2 正常供磷(+P, 500 μmol·L-1)和低磷(-P, 5 μmol·L-1)条件下黄花苜蓿和蒺藜苜蓿根表面积、根体积和比根长的比较(平均值±标准误差, n = 4)
Table 2 Root surface area, root volume and specific root length of Medicago falcata and M. truncatula under conditions of normal (+P, 500 μmol·L-1) and low P (-P, 5 μmol·L-1 ) supply (mean ± SE, n = 4)
植物种 Species | 供磷水平 P level | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 比根长 Specific root length (cm·g-1 DW) |
---|---|---|---|---|
黄花苜蓿 M. falcata | +P | 13.74 ± 2.39a | 0.104 ± 0.012b | 32.36 ± 5.07a |
-P | 6.40 ± 0.67b | 0.053 ± 0.003c | 19.51 ± 2.52b | |
蒺藜苜蓿 M. truncatula | +P | 18.43 ± 2.61a | 0.148 ± 0.021a | 15.47 ± 2.80b |
-P | 14.50 ± 1.43a | 0.116 ± 0.011ab | 13.39 ± 1.79b |
图3 黄花苜蓿和蒺藜苜蓿在正常供磷(+P, 500 μmol·L-1)和低磷(-P, 5 μmol·L-1)条件下的根系柠檬酸量(平均值±标准误差, n = 4)。不同字母表示物种之间和处理间差异显著(p < 0.05)。
Fig. 3 Exudation of citrate from roots of Medicago falcata and M. truncatula under supply of normal (+P, 500 μmol·L-1) and low (- P, 5 μmol·L-1) P (mean ± SE, n = 4). Different letters indicate significant difference between species and treatments at p < 0.05.
[1] | Barber SA, Mackay AD (1986). Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fertilizer Research, 10, 217-230. |
[2] |
Bonser AM, Lynch J, Snapp S (1996). Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytologist, 132, 281-288.
URL PMID |
[3] | Borch K, Bouma TJ, Lynch JP, Brown KM (1999). Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant, Cell & Environment, 22, 425-431. |
[4] | Chen AM (陈爱民), Lian RL (连瑞丽), Sun J (孙杰), Wang YZ (王彦章) (2006). Leguminous model plant—Med- icago truncatula. Plant Physiology Communications (植物生理学通讯), 42, 997-1003. (in Chinese with English abstract) |
[5] |
Desnos T (2008). Root branching responses to phosphate and nitrate. Current Opinion in Plant Biology, 11, 82-87.
DOI URL PMID |
[6] | Dinkelaker B, Römheld V, Marschner H (1989). Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell & Environment, 12, 285-292. |
[7] | Geng HZ (耿华珠) (1995). Alfalfa in China (中国苜蓿). China Agriculture Press, Beijing. (in Chinese) |
[8] |
Gilroy S, Jones DL (2000). Through form to function: root hair development and nutrient uptake. Trends in Plant Science, 5, 56-60.
URL PMID |
[9] |
Johnson JF, Allan DL, Vance CP (1994). Phosphorus stress- induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiology, 104, 657-665.
URL PMID |
[10] |
Johnson JF, Vance CP, Allan DL (1996). Phosphorus deficiency in Lupinus albus (altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). Plant Physiology, 112, 31-41.
DOI URL PMID |
[11] | Li HB (李海波), Xia M (夏铭), Wu P (吴平) (2001). Effect of phosphorus deficiency stress on rice lateral root growth and nutrient absorption. Acta Botanica Sinica (植物学报), 43, 1154-1160. (in Chinese with English abstract) |
[12] |
Liao H, Rubio G, Yan XL, Cao AQ, Brown KM, Lynch JP (2001). Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil, 232, 69-79.
URL PMID |
[13] | Liao H (廖红), Yan XL (严小龙) (2000). Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica (植物学报), 42, 158-163. (in Chinese with English abstract) |
[14] | Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS (2004). Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science, 167, 217-223. |
[15] | Lü SJ (吕世杰) (2007). Primary Studies on Physiological Characteristics of Drought and Salt Resisting and Resistance Mechanism of Medicago falcata L. (黄花苜蓿抗旱、耐盐生理特性及其抗性机理的初步研究). Master dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract) |
[16] |
Lynch J (1995). Root architecture and plant productivity. Plant Physiology, 109, 7-13.
DOI URL PMID |
[17] |
Lynch JP, Brown KM (2001). Topsoil foraging―an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 237, 225-237.
DOI URL |
[18] |
Neumann G, Martinoia E (2002). Cluster roots―an underground adaptation for survival in extreme environments. Trends in Plant Science, 7, 162-167.
DOI URL PMID |
[19] |
Neumann G, Römheld V (1999). Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil, 211, 121-130.
DOI URL |
[20] |
Pennycooke JC, Cheng HM, Stockinger EJ (2008). Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD- ACCLIMATION-SPECIFIC genes. Plant Physiology, 146, 1242-1254.
URL PMID |
[21] |
Raghothama KG (1999). Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.
DOI URL PMID |
[22] |
Raghothama KG, Karthikeyan AS (2005). Phosphate acquisition. Plant and Soil, 274, 37-49.
DOI URL |
[23] |
Richardson AE (2009). Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant and Soil, 322, 17-24.
DOI URL |
[24] |
Ryan PR, Delhaize E, Jones DL (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527-560.
DOI URL PMID |
[25] | Sanderson MA, Jones RM (1993). Stand dynamics and yield components of alfalfa as affected by phosphorus fertility. Agronomy Journal, 85, 241-246. |
[26] | Shen JB, Zhang FS, Huang Q, Mao DR (1998). Determination of organic acids in root exudates by high performance liquid chromatography. I. Development and assessment of chromatographic conditions for organic acid determination. Pedosphere, 8, 97-104. |
[27] |
Vance CP (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology, 127, 390-397.
URL PMID |
[28] |
Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI URL |
[29] | Wang JJ (王俊杰) (2008). Germplasm Resources of Native Sickle Alfalfa in China (中国黄花苜蓿野生种质资源研究). PhD dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract) |
[30] | Wang QR (王庆仁), Li JY (李继云), Li ZS (李振声) (1998). Dynamics and prospect on studies of high acquisition of soil unavailable phosphorus by plants. Plant Nutrition and Fertilizer Science, 4, 107-116. (in Chinese with English abstract) |
[31] | Wang SP (汪诗平), Chen MJ (陈默君) (1992). Effect of P-fertilization on the performance and quality of alfalfa. Chinese Journal of Grassland (中国草地), (6), 66-69. (in Chinese with English abstract) |
[32] | Wang SQ (王树起), Han XZ (韩晓增), Yan J (严君), Li XH (李晓慧), Qiao YF (乔云发) (2010). Impact of phosphorus deficiency stress on root morphology, nitrogen concentration and phosphorus accumulation of soybean (Glycine max L.). Chinese Journal of Soil Science (土壤通报), 41, 645-650. (in Chinese with English abstract) |
[33] | Wei ZW (魏臻武), Gai JY (盖钧镒) (2008). Model legume: Medicago truncatula. Acta Prataculturae Sinica (草业学报), 17, 114-120. (in Chinese with English abstract) |
[34] | Wen Y (温洋), Jin JY (金继运) (2007). Effect of phosphorus levels on photosynthesis and herbage yield and quality of alfalfa. Soil and Fertilizer Sciences in China (中国土壤与肥料), (6), 34-37, 45. (in Chinese with English abstract) |
[35] |
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126, 875-882.
DOI URL PMID |
[36] | Yan XL (严小龙), Huang ZB (黄志斌), Lu RJ (卢仁俊) (1992). Genetics study about crop phosphorus efficiency. Soils (土壤), 24, 102-105. (in Chinese with English abstract) |
[37] | Yan XL (严小龙), Liao H (廖红), Ge ZY (戈振扬), Luo XW (罗锡文) (2000). Root architectural characteristics and phosphorus acquisition efficiency in plants. Chinese Bulletin of Botany (植物学通报), 17, 511-519 . (in Chinese with an English abstract) |
[38] | Yan XL (严小龙), Zhang FS (张福锁) (1997). Genetics Plant Nutrition (植物营养遗传学). China Agriculture Press, Beijing. (in Chinese) |
[39] | Zhao H (赵华), Xu FS (徐芳森), Shi L (石磊), Wang YH (王运华) (2006). Advances in plant root morphology adaptability to phosphorous deficiency stress. Chinese Bulletin of Botany (植物学通报), 23, 409-417. (in Chinese with English abstract) |
[1] | 庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35. |
[2] | 董佳, 牟溥. 翠菊根系养分捕获形态塑性及其生理机制[J]. 植物生态学报, 2012, 36(11): 1172-1183. |
[3] | 杨青, 张一, 周志春, 马雪红, 刘伟宏, 丰忠平. 异质低磷胁迫下马尾松家系根构型和磷效率的遗传变异[J]. 植物生态学报, 2011, 35(12): 1226-1235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19