植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 952-959.DOI: 10.17521/cjpe.2007.0121
所属专题: 生物多样性
收稿日期:
2006-04-03
接受日期:
2006-09-13
出版日期:
2007-04-03
发布日期:
2007-09-30
作者简介:
E-mail: huzhiang@ibcas.ac.cn或zhianghu@yahoo.com
基金资助:
HU Zhi-Ang(), JIANG Guo-Qiang, DENG Xin, WANG Hong-Xin
Received:
2006-04-03
Accepted:
2006-09-13
Online:
2007-04-03
Published:
2007-09-30
摘要:
对环境变化的适应机理一直是进化生物学和生态学长期争论的核心课题。根据适应逆境的生态学和分子生理的最新进展,设想逆境诱导转座子的转座,影响转录因子的表达,随即改变一系列抗性基因的表达水平,抗性种群快速适应形成;由此可能建立一个统一的进化理论。从黄河入海口野生大豆(Glycine soja)盐渍种群植株DNA扩增到一段干旱应答元件结合蛋白基因(DREB)序列,称为GsDREB1。克隆了一个全长的类Gypsy逆转录转座子整合酶基因序列,称为GsINT。种群内各植株该序列有多个拷贝,植株间存在限制片段长度多态性。根据所得的这两个序列,设计并合成包括GsINT 5'上游保守序列的Gs-1等若干引物,试图检测野大豆基因组中GsDREB1的5'上游是否存在逆转录转座子整合酶序列。将GsDREB1标记为探针,Southern杂交表明用Gs-1为正向引物GmDR1为逆向引物所扩增的产物既是多拷贝而又与GsDREB1高度同源。这一对引物扩增和部分测序的结果暗示逆转录转座子有的插入DREB的5'上游,种群内外植株间显现两基因间隔长度的多样性。据此提出抗性种群形成即适应进化分子机理的下列假说。正常种群主要由非抗性普通植株组成。当环境发生变化处于逆境条件时,种群内植株转座频率大大增加。转座子非定向地插入基因组。多数突变中性,不影响表型。少数插入到转录因子的5'上游或其编码区,可促进或阻抑其表达,由此引发转录因子所控制的抗性基因网络表达的增加或减少,抗性相应增加或降低。总的结果是在短时间内就能积累包括高抗性植株在内的有各种抗性水平的个体;对逆境敏感的个体不断地被自然选择所淘汰,但逆境不断诱导其产生,少数植株有可能利用逆境减弱的较短时间完成发育得以生存下来。此假说可以解释逆境条件下的植物种群为什么能快速形成而有更高的遗传多样性;又为什么抗性种群在高抗性植株产生的同时有时存在敏感植株。逆境促进的转座改变转录因子基因表达可能是植物生理和形态快速进化的一般分子机理。
胡志昂, 姜国强, 邓馨, 王洪新. 野大豆种群转座子和转录因子的多样性和分子适应. 植物生态学报, 2007, 31(5): 952-959. DOI: 10.17521/cjpe.2007.0121
HU Zhi-Ang, JIANG Guo-Qiang, DENG Xin, WANG Hong-Xin. MOLECULAR ADAPTATION THROUGH DIVERSITY OF RETROTRANSPOSONS AND TRANSCRIPTIONAL FACTORS IN POPULATIONS OF WILD SOYBEAN (GLYCINE SOJA). Chinese Journal of Plant Ecology, 2007, 31(5): 952-959. DOI: 10.17521/cjpe.2007.0121
图1 野大豆类Gypsy逆转录转座子的整合酶基因GsINT碱基序列 下划线部分为编码区 Underline part is the coding sequence of GsINT 加深部分为保守区,用于设计正向引物Gs-1来扩增INT与DREB1之间的序列 Bold part is the partial consensus domain used to amplify sequences between GsINT and GsDREB1
Fig.1 Sequence of integrase gene(GsINT) of Gypsy-like retrotransposon from Glycine soja
图4 野大豆各种DREB和整合酶基因引物及两者间的扩增谱
Fig.4 Amplified profiles obtained by using GsDREB1 and/or GsINT primers 1: DREB-rage1; 2, 8: DREB-rage1 & Gs-1; 3: Gs-1; 4, 9: GmDR1 & Gs-1; 5: GmDR1; 6, 10: DREB-rage2 & Gs-1; 7: DREB-rage2; M: 250 bp ladder
图5 用探针GsDREB1进行的野大豆各种DREB和整合酶基因引物及两引物间的扩增谱的Southern 杂交 A: 曝光2.5 h Exposed for 2.5 h B: 曝光1 min Exposed for 1 min 1~10样品同图4 1-10 see Fig. 4
Fig.5 Southern blotting of amplified products using GsDREB1 and/or GsINT separated on the agarose gel shown in Fig. 4. Probe: GsDREB1
图6 野大豆盐渍种群植株DREB1保守序列及其5'上游逆转录转座子INT之间序列的扩增长度多样性 扩增引物:GmDR1和 Gs-1。黑色箭头指示主要扩增产物分子量, 白色箭头指多态位点。M: 50 bp ladder 分子量标准;M1: 250 bp ladder 分子量标准 Primers: GmDR1 and Gs-1. Black arrows showed molecular weight (base pair) of major amplified products. White arrows indicated polymorphic bands
Fig.6 Amplified length polymorphism between DREB1 and GsINT of individuals in salinity populations of wild soybean (G. soja)
[1] | Ab-Shukor NA, Kay QON, Stevens DP, Skibinski DOF (1988). Salt tolerance in natural populations of Trifolium repens L. New Phytologist, 109,483-490. |
[2] | Bennetzen JL (2000). Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology, 42,251-269. |
[3] |
Bradshaw AD (1952). Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature, 169,1098.
URL PMID |
[4] | Bult CJ, Kiang YT (1992). Electrophoretic and morphological variation within and among natural populations of the wild soybean, Glycine soja Sieb & Zucc. Botanical Bulletin of Academia Sinica, 33,111-122. |
[5] |
Burke T (1999). Editorial. Molecular Ecology, 8, i-ii.
URL PMID |
[6] | Burke T, Seidler R, Smith H (1992). Editorial. Molecular Ecology, 1,1. |
[7] | Chinnusamy V, Jagendorf A, Zhu JK (2005). Understanding and improving salt tolerance in plants. Crop Science, 45,437-448. |
[8] |
Clark RM, Wagler TN, Quijada P, Doebley J (2006). A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature Genetics, 38,594-597.
URL PMID |
[9] |
DeBarry JD, Ganko EW, McCarthy EM, McDonald JF (2006). The contribution of LTR retrotransposon sequences to gene evolution in Mus musculus. Molecular Biology and Evolution, 23,479-481.
URL PMID |
[10] |
Doebley J (2006). Unfallen grains: how ancient farmers turned weeds into crops. Science, 312,1318-1319.
DOI URL PMID |
[11] | Gartside DW, McNeilly T (1974). The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal population of different plant species. Heredity, 32,335-348. |
[12] | Grandbastien MA (1998). Activation of plant retrotransposons under stress conditions. Trends in Plant Science, 3,181-187. |
[13] | Hannon N, Bradshaw AD (1968). Evolution of salt tolerance in two coexisting species of grass. Nature, 220,1342-1343. |
[14] |
Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996). Retrotransposons of rice involved in mutations induced by tissue culture. Proceedings of the National Academy of Sciences of the United States of America, 93,7783-7788.
URL PMID |
[15] | Hu ZA (胡志昂), Wang HX (王洪新) (1983). An improved method to detect allozymes of Sp1 and Ti loci in soybean seed proteins. Acta Botanica Sinica (植物学报), 25,532-536. (in Chinese with English abstract) |
[16] | Hu ZA (胡志昂), Wang HX (王洪新) (1985). Genetic structure of natural populations of wild soybean (Glycine soja) in Beijing region. Acta Botanica Sinica (植物学报), 27,599-604. (in Chinese with English abstract) |
[17] | Hu ZA (胡志昂), Wang HX (王洪新), Yan LF (阎龙飞) (1983). Biochemical systematics of gymnosperm. I. Peroxidases of Pinaceae. Acta Phytotaxonomica Sinica (植物分类学报), 21,423-432. (in Chinese with English abstract) |
[18] | Hu ZA (胡志昂), Yun R (恽锐), Zhong M (钟敏), Dong FG (董夫贵), Wang HX (王洪新), Qian YQ (钱迎倩) (1997). Comparison and improvement of polymorphism amplification methods used for detecting DNA diversity of plants. Acta Botanica Sinica (植物学报), 39,144-148. (in Chinese with English abstract) |
[19] | Hu ZA (胡志昂), Zhang YP (张亚平) (1997). Genetic Diversity of Animals and Plants in China (中国动植物的遗传多样性). Zhejiang Science and Technology Press, Hangzhou. (in Chinese with English abstract) |
[20] | Jacob F, Monod J (1961). On the regulation of gene activity. Cold Spring Harbor Symposium on Quantitative Biology, 26,193-211. |
[21] |
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17,287-291.
DOI URL PMID |
[22] |
Kimura M (1968). Evolutionary rate at the molecular level. Nature, 217,624-626.
DOI URL PMID |
[23] |
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10,1391-1406.
DOI URL PMID |
[24] | Liviero L, Maestri E, Gulli M, Nevo E, Marmiroli N (2002). Ecogeographic adaptation and genetic variation in wild barley, application of molecular markers targeted to environmentally regulated genes. Genetic Resources and Crop Evolution, 49,133-144. |
[25] |
McClintock B (1984). The significance of responses of the genome to challenge. Science, 226,792-801.
URL PMID |
[26] | Mitton JB (1998). Molecular markers and natural selection. In: Carvalho GRed. Advances in Molecular Ecology. IOS Press, Amsterdam,225-241. |
[27] | Nevo E (2001). Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 98,6233-6240. |
[28] | Novillo F, Alonso JM, Ecker JR, Salinas J (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101,3985-3990. |
[29] | Owuor ED, Beharav A, Fahima T, Kirzhner VM, Korol AB, Nevo E (2003). Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genetic Resources and Crop Evolution, 50,213-224. |
[30] | Sambrook J, Fritsch EF, Maniatis T (1993). Molecular Cloning: A Laboratory Manual 2nd edn. Cold Spring Harbor Laboratory Press, New York. |
[31] |
Schulman AH, Kalendar R (2005). A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetic and Genome Research, 110,598-605.
DOI URL PMID |
[32] |
Singh RJ, Kollipara KP, Hymowitz T (1992). Genomic relationships among diploid wild perennial species of the genus Glycine Willd. subgenus Glycine revealed by crossability, meiotic chromosome pairing and seed protein electrophoresis. Theoretical and Applied Genetics, 85,276-282.
DOI URL PMID |
[33] |
Storz JF (2005). Using genome scans of DNA polymorphism to infer adaptive population divergence. Molecular Ecology, 14,671-688.
URL PMID |
[34] |
Turpeinen T, Tenhola T, Manninen O, Nevo E, Nissilä E (2001). Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Molecular Ecology, 10,1577-1591.
URL PMID |
[35] | Wang HX (王洪新), Hu ZA (胡志昂), Zhong M (钟敏), Lu WJ (陆文静), Wei W (魏伟), Yun R (恽锐), Qian YQ (钱迎倩) (1997). Genetic differentiation and physiological adaptation of wild soybean (Glycine soja) populations under saline conditions: isozymatic and random amplified polymorphic DNA study. Acta Botanica Sinica (植物学报), 39,34-42. (in Chinese with English abstract) |
[36] |
Wang RL, Stec A, Hey J, Lukens L, Doebly J (1999). The limits of selection during maize domestication. Nature, 398,236-239.
URL PMID |
[37] |
Weaver KR, Caetano-Anollés G, Gresshoff PM, Callahan LM (1994). Isolation and cloning of DNA amplification products from silver-stained polyacrylamide gels. BioTechniques, 16,226-227.
URL PMID |
[38] |
Wessler SR (1996). Plant retrotransposons: turned on by stress. Current Biology, 6,959-961.
DOI URL PMID |
[39] |
Wilson AC, Carlson SS, White TJ (1977). Biochemical evolution. Annual Review of Biochemistry, 46,573-639.
URL PMID |
[40] | Wu L, Bradshaw AD, Thurman DA (1975). The potential for evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity, 34,165-187. |
[41] |
Yamaguchi-Shinozaki K, Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6,251-264.
URL PMID |
[42] | Yamaguchi-Shinozaki K, Shinozaki K (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends in Plant Science, 10,1360-1385. |
[43] | Yu H, Kiang YT (1993). Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica, 68,213-221. |
[44] | Zhang Q, Wang HX, Hu ZA (1999). RAPD markers associated with salt tolerance in wild soybean populations. Soybean Genetics Newsletter, 26,10. |
[45] | Zhou S, Zhao KF (2003). Discussion on the problem of salt gland of Glycine soja. Acta Botanica Sinica (植物学报), 45,574-580. |
[1] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[2] | 张涛, 安黎哲, 陈拓, 代春艳, 陈年来. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报, 2009, 33(4): 802-811. |
[3] | 周三, 周明, 张硕, 刘占涛, 赵永娟, 余天真, 岳旺. 盐生野大豆的异黄酮积累及其生态学意义[J]. 植物生态学报, 2007, 31(5): 930-936. |
[4] | 王利军, 李绍华, 李家永, 杨树华, 刘允芬, 石玉林. 温度逆境交叉适应对葡萄叶片膜脂过氧化和细胞钙分布的影响[J]. 植物生态学报, 2004, 28(3): 326-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19