植物生态学报 ›› 2011, Vol. 35 ›› Issue (3): 337-344.DOI: 10.3724/SP.J.1258.2011.00337
收稿日期:
2010-09-09
接受日期:
2010-11-22
出版日期:
2011-09-09
发布日期:
2011-03-02
通讯作者:
储诚进
作者简介:
*E-mail: cjchu@lzu.edu.cn
WANG You-Shi1, CHU Cheng-Jin2,*()
Received:
2010-09-09
Accepted:
2010-11-22
Online:
2011-09-09
Published:
2011-03-02
Contact:
CHU Cheng-Jin
摘要:
基于多变量统计方法同时研究自然系统内多个因子之间的相互关系, 是阐释复杂的自然系统的一个重要手段。相比传统的多变量统计法, 结构方程模型基于研究者的先验知识预先设定系统内因子间的依赖关系, 不仅能够判别各因子之间的关系强度(路径系数), 还能对整体模型进行拟合和判断, 从而能更全面地了解自然系统。由于结构方程模型只在近年才被应用到生态学的数据分析中, 因此该文试图对其作一简略介绍, 包括结构方程模型的定义和变量类型, 结合事例研究展现结构方程模型分析的一般步骤、在生态学中的应用以及相关软件的介绍等。望能为相关研究人员提供直观的认识, 加强结构方程模型在生态学数据分析中的应用。
王酉石, 储诚进. 结构方程模型及其在生态学中的应用. 植物生态学报, 2011, 35(3): 337-344. DOI: 10.3724/SP.J.1258.2011.00337
WANG You-Shi, CHU Cheng-Jin. A brief introduction of structural equation model and its application in ecology. Chinese Journal of Plant Ecology, 2011, 35(3): 337-344. DOI: 10.3724/SP.J.1258.2011.00337
图1 结构方程模型的图形表示形式, 涉及1个自变量(x1)和3个因变量(y1, y2和y3)。其中γ (γ11, γ21和γ31)表示的是变量x对变量y的影响, β (β21和β32)表示的是变量y之间的影响, ξ表示响应变量的残差(改自Grace, 2006)。
Fig. 1 The generic graph demonstration of structural equation model, which involves one independent variable (x1) and three dependent variables (y1, y2 and y3). γ (γ11, γ21 and γ31) represent the effects of x variable on y variables, and β (β21 and β32) represent the effects among y variables. The residual variances are denoted by ξ (Modified from Grace, 2006).
SEM | DA | RT | PCA | MR | |
---|---|---|---|---|---|
包含判断模型拟合程度的测量 Includes measures of absolute model fit | √ | ||||
预先假定变量间因果关系 User can specify majority of relationships | √ | ||||
包含隐变量 Includes latent variables | √ | √ | |||
处理测量误差 Address measurement error | √ | ||||
进行模型整体评价 Allows evaluation of alternative models | √ | √ | |||
探讨系统内多个变量间关系 Examines networks of relationships | √ | ||||
模型构建 Model building | √ | √ | √ | √ | √ |
表1 结构方程模型与其他多变量统计方法的比较(改自Grace, 2006)
Table 1 Attribute comparisons of SEM with other multivariate methods (Modified from Grace, 2006)
SEM | DA | RT | PCA | MR | |
---|---|---|---|---|---|
包含判断模型拟合程度的测量 Includes measures of absolute model fit | √ | ||||
预先假定变量间因果关系 User can specify majority of relationships | √ | ||||
包含隐变量 Includes latent variables | √ | √ | |||
处理测量误差 Address measurement error | √ | ||||
进行模型整体评价 Allows evaluation of alternative models | √ | √ | |||
探讨系统内多个变量间关系 Examines networks of relationships | √ | ||||
模型构建 Model building | √ | √ | √ | √ | √ |
图2 结构方程模型中不同箭头类型和不同变量类型图示。a-g, 观察变量; I-L, 隐变量; M, 综合变量。ξ项表示隐变量上无法明确来源的效应, 而δ和ε表示观察变量上无法明确来源的效应。(改自Grace, 2006)
Fig. 2 The generic demonstration for the types of arrows and variables used in structural equation model. a-g: observed variables; I-L: latent variables; M: composite variable. The ξ terms refer to variables that represent unspecified effects on dependent latent variables, while δ and ε are variables that represent unspecified effects on observed variables. (Modified from Grace, 2006)
图4 两种跳甲防治乳浆大戟入侵的事例研究。上图为初始模型, 下图为修正后的模型。(改自Larson & Grace, 2004)
Fig. 4 The bio-control of two flea beetle species (Aphthona lacertosa and A. nigriscutis) on invasive species leafy spurge (Euphorbia esula). The upper panel is for the initial model and the lower for the revised model. (Modified from Larson & Grace, 2004)
[1] |
Akaike H (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control AC, 19, 716-723.
DOI URL |
[2] | Blalock HM (1964). Causal Inferences in Nonexperimental Research. University of North Carolina Press, Chapel Hill, NC, USA. |
[3] | Bollen KA (1984). Multiple indicators: internal consistency or no necessary relationship. Quality and Quantity, 18, 377-385. |
[4] | Bollen KA (1989). Structural Equations with Latent Variables. John Wiley & Sons, New York). |
[5] | Byrne BM (2001). Structural Equation Modeling with AMOS. Lawrence Erlbaum Associates, Mahway, NJ. |
[6] |
Cherry JA, MeKee KL, Grace JB (2009). Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology, 97, 67-77.
DOI URL |
[7] | Clark JS (2007). Models for Ecological Data: An Introduction. Princeton University Press, Princeton, NJ, USA. |
[8] |
Dietze MC, Wolosin MS, Clark JS (2008). Capturing diversity and interspecific variability in allometries: a hierarchical approach. Forest Ecology and Management, 256, 1939-1948.
DOI URL |
[9] | Fornell C (1982). A Second Generation of Multivariate Analyses: Volumes I. and II. Praeger Publishers, New York, USA. |
[10] |
Fox J (2006). Structural equation modeling with the sem package in R. Structural Equation Modeling, 13, 465-486.
DOI URL |
[11] | Grace JB (1999). The factors controlling species density in herbaceous plant communities: an assessment. Perspec- tives in Plant Ecology, Evolution and Systematics, 2, 1-28. |
[12] | Grace JB (2001). The roles of community biomass and species pools in the regulation of plant diversity. Oikos, 92, 191-207. |
[13] | Grace JB (2006). Structural Equation Modeling and Natural Systems. Cambridge University Press, Cambridge, UK. |
[14] |
Grace JB, Allain LK, Allen C (2000). Factors associated with plant species richness in a coastal tall-grass prairie. Journal of Vegetation Science, 11, 443-452.
DOI URL |
[15] |
Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007). Does species diversity limit productivity in natural grassland communities? Ecology Letters, 10, 680-689.
DOI URL PMID |
[16] |
Heise DR (1972). Employing nominal variables, induced variables, and block variables in path analysis. Sociological Methods and Research, 1, 147-173.
DOI URL |
[17] |
Iriondo JM, Albert MJ, Escudero A (2003). Structural equation modelling: an alternative for assessing causal relationships in threatened plant populations. Biological Conservation, 113, 367-377.
DOI URL |
[18] | Jöreskog KG (1973). A general method for estimating a linear structural equation system. In: Goldberger AS, Duncan OD eds. Structural Equation Models in the Social Sciences. Seminar Press New York. |
[19] |
Jonsson M, Wardle DA (2010). Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biology Letters, 6, 116-119.
DOI URL PMID |
[20] |
Lamb EG, Cahill JF (2008). When competition does not matter: grassland diversity and community composition. The American Naturalist, 171, 777-787.
DOI URL PMID |
[21] |
Lamb EG, Kembel SW, Cahill JF (2009). Shoot, but not root, competition reduces community diversity in experimental mesocosms. Journal of Ecology, 97, 155-163.
DOI URL |
[22] |
Larson DL, Grace JB (2004). Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents. Biological Control, 29, 207-214.
DOI URL |
[23] |
Laughlin DC, Abella SR, Covington WW, Grace JB (2007). Species richness and soil properties in Pinus ponderosa forests: a structural equation modelling analysis. Journal of Vegetation Science, 18, 231-242.
DOI URL |
[24] | Lee SY (2007). Structural Equation Modeling: A Bayesian Approach. John Wiley & Sons, New York, USA. |
[25] | Miao SL, Carstenn S, Nungesser M (2009). Real World Ecology: Large-scale and Long-term Case Studies and Methods. Springer, New York, USA. |
[26] | Muthén LK, Muthén BO (2004). Mplus User’s Guide 3rd edn. Muthén and Muthén, Los Angeles, CA. |
[27] | Raftery AE (1993). Bayesian model selection in structural equation models. In: Bollen KA, Long JS eds. Testing Structural Equation Models. Sage Publishers Newbury park, CA. |
[28] |
Saura-Mas S, Shipley B, Lloret F (2009). Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species. Functional Ecology, 23, 103-110.
DOI URL |
[29] | Shipley B (2000). Cause and Correlation in Biology. Cambridge University Press, Cambridge, UK. |
[30] |
Shipley B, Lechowicz MJ, Wright I, Reich P (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.
DOI URL PMID |
[31] |
Spitale D, Petraglia A, Tomaselli M (2009). Structural equation modelling detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients. Journal of Biogeography, 36, 745-755.
DOI URL |
[32] |
Weiher E, Forbes S, Schauwecker T, Grace JB (2004). Multivariate control of plant species richness in a blackland prairie. Oikos, 106, 151-157.
DOI URL |
[33] |
Wright S (1918). On the nature of size factors. Genetics, 3, 367-374.
URL PMID |
[34] |
Wright S (1920). The relative importance of heredity and environment in determining the piebald pattern of guinea pigs. Proceedings of the National Academy of Sciences of the United States of America, 6, 320-332.
DOI URL PMID |
[35] | Wright S (1921). Correlation and causation. Journal of Agricultural Research, 10, 557-585. |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[3] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[4] | 温纯, 金光泽. 功能多样性对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2019, 43(2): 94-106. |
[5] | 周晓兵, 张元明, 陶冶, 吴林. 新疆古尔班通古特沙漠土壤N2O、CH4和CO2通量及其对氮沉降增加的响应[J]. 植物生态学报, 2017, 41(3): 290-300. |
[6] | 谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11): 1149-1156. |
[7] | 王谢,向成华,李贤伟,文冬菊. 冬季火如何影响川西亚高山草地植物群落?[J]. 植物生态学报, 2014, 38(11): 1194-1204. |
[8] | 贾光林,黄林芳,索风梅,宋经元,谢彩香,孙娟. 人参药材中人参皂苷与生态因子的相关性及人参生态区划[J]. 植物生态学报, 2012, 36(4): 302-312. |
[9] | 许清海, 吴忱, 王子惠, 童国榜, 吴绍杰, 张俊牌, 杜乃秋, 孔昭宸. 25000年以来渤海湾西岸古环境探讨[J]. 植物生态学报, 1993, 17(1): 20-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19