植物生态学报 ›› 2014, Vol. 38 ›› Issue (11): 1194-1204.DOI: 10.3724/SP.J.1258.2014.00115
收稿日期:
2014-04-08
接受日期:
2014-09-07
出版日期:
2014-04-08
发布日期:
2014-11-17
通讯作者:
李贤伟
基金资助:
WANG Xie1,XIANG Cheng-Hua1,2,LI Xian-Wei1,*(),WEN Dong-Ju1
Received:
2014-04-08
Accepted:
2014-09-07
Online:
2014-04-08
Published:
2014-11-17
Contact:
LI Xian-Wei
摘要:
虽然火后土壤理化性质、微生物特性与植物群落结构之间的关系已经被大量报道, 但迄今为止, 火影响植物群落结构的具体途径依然存在较大争议。该文以可持续管理草地生态系统为目的, 试图揭示冬季火影响川西亚高山草地生态系统的植物群落结构的具体途径, 提出了“火通过改造土壤环境来影响植物群落结构和多样性”的假设。在对比火烧区域和未火烧区域土壤的理化性质、微生物特性和植物群落结构的基础上, 联合非度量多维尺度分析和结构方程模型, 模拟了5种可能改变植物群落的主要途径。结果表明, 相对于冬季火的直接作用而言, 川西亚高山草地火后植物群落结构的塑造主要依赖于火对土壤微生物特性的改变, 且该假设途径具有最佳的模拟效果。这暗示了土壤微生物的死亡和繁殖是改变火后土壤理化性质和植物群落结构的重要途径。土壤作为一个整体环境, 其微生物生命代谢活动在调控火后土壤生物化学循环(特别是氮循环过程)中所扮演的角色有待进一步的研究。
王谢,向成华,李贤伟,文冬菊. 冬季火如何影响川西亚高山草地植物群落?. 植物生态学报, 2014, 38(11): 1194-1204. DOI: 10.3724/SP.J.1258.2014.00115
WANG Xie,XIANG Cheng-Hua,LI Xian-Wei,WEN Dong-Ju. How a winter wildfire affect plant community in subalpine grassland of western Sichuan, China?. Chinese Journal of Plant Ecology, 2014, 38(11): 1194-1204. DOI: 10.3724/SP.J.1258.2014.00115
指标 Index | 数据类型 Data type | 单位 Unit | |
---|---|---|---|
样地的编号 Plot ID | 数值 Value | ||
冬季火处理 Treatment by a winter fire | 分类 Group | ||
样地的空间位置 Spatial location of plots | |||
经度 Longitude1) | 数值 Value | ||
纬度 Latitude1) | 数值 Value | ||
海拔 Elevation | 数值 Value | m | |
坡向 Slope aspect | 分类 Group | ||
坡位 Slope position2) | 分类 Group | ||
土壤理化性质 Soil physiochemical properties3) | |||
含水量 Water content | 数值 Value | g·kg-1 | |
容重 Bulk density | 数值 Value | g·cm-3 | |
最大持水量 Maximum water holding capacity | 数值 Value | g·kg-1 | |
毛管持水量 Capillary water holding capacity | 数值 Value | g·kg-1 | |
最小持水量 Minimum water holding capacity | 数值 Value | g·kg-1 | |
毛管孔隙度 Capillary porosity | 数值 Value | % | |
非毛管孔隙度 Non-capillary porosity | 数值 Value | % | |
总孔隙度 Total porosity | 数值 Value | % | |
酸碱度 pH | 数值 Value | ||
有机质含量 Organic matter content | 数值 Value | g·kg-1 | |
全氮含量 Total nitrogen content | 数值 Value | g·kg-1 | |
有效磷含量 Available phosphorus content | 数值 Value | mg·kg-1 | |
速效钾含量 Rapidly available potassium content | 数值 Value | mg·kg-1 | |
可溶性有机碳含量 Dissolved organic carbon content | 数值 Value | mg·kg-1 | |
可溶性有机氮含量Dissolved organic nitrogen content | 数值 Value | mg·kg-1 | |
土壤微生物学特性 Soil microbial properties3) | |||
微生物生物量碳 Microbial biomass carbon | 数值 Value | mg·kg-1 | |
微生物生物量氮 Microbial biomass nitrogen | 数值 Value | mg·kg-1 | |
β葡糖苷酶活性 β-glucoside enzyme activity | 数值 Value | μg·g-1·h-1 | |
酸性磷酸酶活性 Acid phosphatase activity | 数值 Value | μg·g-1·h-1 | |
碱性磷酸酶活性 Alkaline phosphatase activity | 数值 Value | μg·g-1·h-1 | |
脲酶活性 Urease activity | 数值 Value | mg·g-1·h-1 | |
蔗糖酶活性 Invertase activity | 数值 Value | mg·g-1·h-1 | |
蛋白酶活性 Proteinase activity | 数值 Value | mg·g-1·h-1 | |
过氧化氢酶活性 Catalase activity | 数值 Value | ml·g-1·h-1 | |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 数值 Value | μmol·g-1·h-1 | |
植物群落组成 Plant community composition4) | |||
植物群落结构 Plant community structure | |||
物种丰富度 Species richness | 数值 Value | ||
物种均匀度 Species evenness5) | 数值 Value | ||
物种多样性 Species diversity6) | 数值 Value | ||
可食豆科类生物量比例 Percentage of leguminous species group biomass | 数值 Value | % | |
毒草类生物量比例 Percentage of noxious species group biomass | 数值 Value | % | |
可食禾草类生物量比例 Percentage of germinal species group biomass | 数值 Value | % | |
可食莎草类生物量比例 Percentage of sedge species group biomass | 数值 Value | % | |
可食杂草类生物量比例 Percentage of forbs species group biomass | 数值 Value | % | |
样地生物量 Biomass of plot | 数值 Value | g·m-2 |
表1 土壤理化性质、土壤微生物特性和植被群落结构指标体系的构建
Table 1 Constructions of index systems of soil physiochemical properties, soil microbial properties, and plant community structure
指标 Index | 数据类型 Data type | 单位 Unit | |
---|---|---|---|
样地的编号 Plot ID | 数值 Value | ||
冬季火处理 Treatment by a winter fire | 分类 Group | ||
样地的空间位置 Spatial location of plots | |||
经度 Longitude1) | 数值 Value | ||
纬度 Latitude1) | 数值 Value | ||
海拔 Elevation | 数值 Value | m | |
坡向 Slope aspect | 分类 Group | ||
坡位 Slope position2) | 分类 Group | ||
土壤理化性质 Soil physiochemical properties3) | |||
含水量 Water content | 数值 Value | g·kg-1 | |
容重 Bulk density | 数值 Value | g·cm-3 | |
最大持水量 Maximum water holding capacity | 数值 Value | g·kg-1 | |
毛管持水量 Capillary water holding capacity | 数值 Value | g·kg-1 | |
最小持水量 Minimum water holding capacity | 数值 Value | g·kg-1 | |
毛管孔隙度 Capillary porosity | 数值 Value | % | |
非毛管孔隙度 Non-capillary porosity | 数值 Value | % | |
总孔隙度 Total porosity | 数值 Value | % | |
酸碱度 pH | 数值 Value | ||
有机质含量 Organic matter content | 数值 Value | g·kg-1 | |
全氮含量 Total nitrogen content | 数值 Value | g·kg-1 | |
有效磷含量 Available phosphorus content | 数值 Value | mg·kg-1 | |
速效钾含量 Rapidly available potassium content | 数值 Value | mg·kg-1 | |
可溶性有机碳含量 Dissolved organic carbon content | 数值 Value | mg·kg-1 | |
可溶性有机氮含量Dissolved organic nitrogen content | 数值 Value | mg·kg-1 | |
土壤微生物学特性 Soil microbial properties3) | |||
微生物生物量碳 Microbial biomass carbon | 数值 Value | mg·kg-1 | |
微生物生物量氮 Microbial biomass nitrogen | 数值 Value | mg·kg-1 | |
β葡糖苷酶活性 β-glucoside enzyme activity | 数值 Value | μg·g-1·h-1 | |
酸性磷酸酶活性 Acid phosphatase activity | 数值 Value | μg·g-1·h-1 | |
碱性磷酸酶活性 Alkaline phosphatase activity | 数值 Value | μg·g-1·h-1 | |
脲酶活性 Urease activity | 数值 Value | mg·g-1·h-1 | |
蔗糖酶活性 Invertase activity | 数值 Value | mg·g-1·h-1 | |
蛋白酶活性 Proteinase activity | 数值 Value | mg·g-1·h-1 | |
过氧化氢酶活性 Catalase activity | 数值 Value | ml·g-1·h-1 | |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 数值 Value | μmol·g-1·h-1 | |
植物群落组成 Plant community composition4) | |||
植物群落结构 Plant community structure | |||
物种丰富度 Species richness | 数值 Value | ||
物种均匀度 Species evenness5) | 数值 Value | ||
物种多样性 Species diversity6) | 数值 Value | ||
可食豆科类生物量比例 Percentage of leguminous species group biomass | 数值 Value | % | |
毒草类生物量比例 Percentage of noxious species group biomass | 数值 Value | % | |
可食禾草类生物量比例 Percentage of germinal species group biomass | 数值 Value | % | |
可食莎草类生物量比例 Percentage of sedge species group biomass | 数值 Value | % | |
可食杂草类生物量比例 Percentage of forbs species group biomass | 数值 Value | % | |
样地生物量 Biomass of plot | 数值 Value | g·m-2 |
指标1) Variable1) | 火烧区域2) Burned area2) | 未火烧区域 Unburned area | F1, 343) F1, 343) | p p |
---|---|---|---|---|
含水量 Water content | 196.15 ± 45.73 | 211.34 ± 76.72 | 0.22 | 0.64 |
容重 Bulk density | 1.02 ± 0.04 | 1.00 ± 0.07 | 0.84 | 0.37 |
最大持水量 Maximum water holding capacity | 623.81 ± 64.42 | 648.85 ± 68.47 | 1.28 | 0.27 |
毛管持水量 Capillary water holding capacity | 400.97 ± 47.17 | 476.85 ± 66.24 | 15.68 | <0.01 |
最小持水量 Minimum water holding capacity | 241.99 ± 67.56 | 264.36 ± 86.25 | 0.75 | 0.39 |
毛管孔隙度 Capillary porosity | 22.64 ± 5.27 | 17.33 ± 4.85 | 9.89 | <0.01 |
非毛管孔隙度 Non-capillary porosity | 40.81 ± 4.19 | 47.46 ± 4.52 | 20.93 | <0.01 |
总孔隙度 Total porosity | 63.45 ± 4.87 | 64.79 ± 6.12 | 0.53 | 0.47 |
酸碱度 pH | 7.06 ± 0.49 | 6.73 ± 0.39 | 4.95 | 0.03 |
有机质含量 Organic matter content | 135.86 ± 31.89 | 96.74 ± 22.70 | 18.11 | <0.01 |
全氮含量 Total nitrogen content | 4.46 ± 0.69 | 3.78 ± 0.45 | 1.18 | 0.29 |
有效磷含量 Available phosphorus content | 499.76 ± 406.52 | 141.26 ± 75.81 | 0.20 | 0.66 |
速效钾含量 Rapidly available potassium content | 514.92 ± 93.05 | 436.56 ± 104.26 | 5.53 | 0.02 |
可溶性有机碳含量 Dissolved organic carbon content | 413.50 ± 327.21 | 324.7 ± 109.73 | < 0.01 | 0.97 |
可溶性有机氮含量 Dissolved organic nitrogen content | 31.54 ± 24.05 | 37.61 ± 20.38 | 2.13 | 0.15 |
微生物生物量碳 Microbial biomass carbon | 1 301.67 ± 145.01 | 592.92 ± 333.55 | 45.89 | <0.01 |
微生物生物量氮 Microbial biomass nitrogen | 52.19 ± 20.22 | 61.96 ± 29.62 | 1.39 | 0.25 |
β葡糖苷酶活性 β-glucoside enzyme activity | 9.12 ± 1.94 | 7.24 ± 2.46 | 6.49 | 0.02 |
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85 | 13.26 ± 3.81 | 0.73 | 0.40 |
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45 | 7.55 ± 3.53 | 12.74 | <0.01 |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 1.26 ± 0.60 | 1.21 ± 0.39 | < 0.01 | 0.96 |
脲酶活性 Urease activity | 0.30 ± 0.15 | 0.14 ± 0.09 | 12.90 | <0.01 |
蔗糖酶活性 Invertase activity | 60.39 ± 16.07 | 50.66 ± 7.53 | 3.60 | 0.07 |
蛋白酶活性 Proteinase activity | 1.08 ± 0.28 | 0.96 ± 0.24 | 2.02 | 0.16 |
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11 | 1.28 ± 0.10 | 10.45 | <0.01 |
物种丰富度 Richness of species | 13.50 ± 3.68 | 13.33 ± 1.88 | 0.05 | 0.83 |
物种均匀度 Evenness of species | 0.74 ± 0.13 | 0.73 ± 0.08 | 0.07 | 0.79 |
物种多样性 Diversity of species | 1.92 ± 0.46 | 1.89 ± 0.24 | 0.05 | 0.82 |
可食豆科类生物量比例 Percentage of leguminous species group biomass | 4.74 ± 7.78 | 3.04 ± 2.86 | 0.07 | 0.80 |
毒草类生物量比例 Percentage of noxious species group biomass | 2.57 ± 3.86 | 0.79 ± 0.87 | 2.19 | 0.15 |
可食禾草类生物量比例 Percentage of germinal species group biomass | 34.38 ± 16.79 | 43.45 ± 24.73 | 1.66 | 0.21 |
可食莎草类生物量比例 Percentage of sedge species group biomass | 6.41 ± 5.86 | 4.46 ± 5.91 | 0.95 | 0.34 |
可食杂草类生物量比例 Percentage of forbs species group biomass | 51.91 ± 20.39 | 48.27 ± 24.79 | 0.23 | 0.63 |
样地生物量 Biomass of plot | 155.79 ± 70.84 | 262.87 ± 130.57 | 9.11 | <0.01 |
表2 冬季火对0-5 cm土层土壤理化性质、土壤微生物学特性和植物群落结构的影响一览表(平均值±标准偏差)
Table 2 Summary of the effects of winter fire treatment on soil physiochemical properties, soil microbial properties, and plant community structure (mean ± SD)
指标1) Variable1) | 火烧区域2) Burned area2) | 未火烧区域 Unburned area | F1, 343) F1, 343) | p p |
---|---|---|---|---|
含水量 Water content | 196.15 ± 45.73 | 211.34 ± 76.72 | 0.22 | 0.64 |
容重 Bulk density | 1.02 ± 0.04 | 1.00 ± 0.07 | 0.84 | 0.37 |
最大持水量 Maximum water holding capacity | 623.81 ± 64.42 | 648.85 ± 68.47 | 1.28 | 0.27 |
毛管持水量 Capillary water holding capacity | 400.97 ± 47.17 | 476.85 ± 66.24 | 15.68 | <0.01 |
最小持水量 Minimum water holding capacity | 241.99 ± 67.56 | 264.36 ± 86.25 | 0.75 | 0.39 |
毛管孔隙度 Capillary porosity | 22.64 ± 5.27 | 17.33 ± 4.85 | 9.89 | <0.01 |
非毛管孔隙度 Non-capillary porosity | 40.81 ± 4.19 | 47.46 ± 4.52 | 20.93 | <0.01 |
总孔隙度 Total porosity | 63.45 ± 4.87 | 64.79 ± 6.12 | 0.53 | 0.47 |
酸碱度 pH | 7.06 ± 0.49 | 6.73 ± 0.39 | 4.95 | 0.03 |
有机质含量 Organic matter content | 135.86 ± 31.89 | 96.74 ± 22.70 | 18.11 | <0.01 |
全氮含量 Total nitrogen content | 4.46 ± 0.69 | 3.78 ± 0.45 | 1.18 | 0.29 |
有效磷含量 Available phosphorus content | 499.76 ± 406.52 | 141.26 ± 75.81 | 0.20 | 0.66 |
速效钾含量 Rapidly available potassium content | 514.92 ± 93.05 | 436.56 ± 104.26 | 5.53 | 0.02 |
可溶性有机碳含量 Dissolved organic carbon content | 413.50 ± 327.21 | 324.7 ± 109.73 | < 0.01 | 0.97 |
可溶性有机氮含量 Dissolved organic nitrogen content | 31.54 ± 24.05 | 37.61 ± 20.38 | 2.13 | 0.15 |
微生物生物量碳 Microbial biomass carbon | 1 301.67 ± 145.01 | 592.92 ± 333.55 | 45.89 | <0.01 |
微生物生物量氮 Microbial biomass nitrogen | 52.19 ± 20.22 | 61.96 ± 29.62 | 1.39 | 0.25 |
β葡糖苷酶活性 β-glucoside enzyme activity | 9.12 ± 1.94 | 7.24 ± 2.46 | 6.49 | 0.02 |
酸性磷酸酶活性 Acid phosphatase activity | 16.58 ± 7.85 | 13.26 ± 3.81 | 0.73 | 0.40 |
碱性磷酸酶活性 Alkaline phosphatase activity | 11.20 ± 3.45 | 7.55 ± 3.53 | 12.74 | <0.01 |
荧光素二乙酰酯酶活性 Fluorescein diacetate hydrolase activity | 1.26 ± 0.60 | 1.21 ± 0.39 | < 0.01 | 0.96 |
脲酶活性 Urease activity | 0.30 ± 0.15 | 0.14 ± 0.09 | 12.90 | <0.01 |
蔗糖酶活性 Invertase activity | 60.39 ± 16.07 | 50.66 ± 7.53 | 3.60 | 0.07 |
蛋白酶活性 Proteinase activity | 1.08 ± 0.28 | 0.96 ± 0.24 | 2.02 | 0.16 |
过氧化氢酶活性 Catalase activity | 1.39 ± 0.11 | 1.28 ± 0.10 | 10.45 | <0.01 |
物种丰富度 Richness of species | 13.50 ± 3.68 | 13.33 ± 1.88 | 0.05 | 0.83 |
物种均匀度 Evenness of species | 0.74 ± 0.13 | 0.73 ± 0.08 | 0.07 | 0.79 |
物种多样性 Diversity of species | 1.92 ± 0.46 | 1.89 ± 0.24 | 0.05 | 0.82 |
可食豆科类生物量比例 Percentage of leguminous species group biomass | 4.74 ± 7.78 | 3.04 ± 2.86 | 0.07 | 0.80 |
毒草类生物量比例 Percentage of noxious species group biomass | 2.57 ± 3.86 | 0.79 ± 0.87 | 2.19 | 0.15 |
可食禾草类生物量比例 Percentage of germinal species group biomass | 34.38 ± 16.79 | 43.45 ± 24.73 | 1.66 | 0.21 |
可食莎草类生物量比例 Percentage of sedge species group biomass | 6.41 ± 5.86 | 4.46 ± 5.91 | 0.95 | 0.34 |
可食杂草类生物量比例 Percentage of forbs species group biomass | 51.91 ± 20.39 | 48.27 ± 24.79 | 0.23 | 0.63 |
样地生物量 Biomass of plot | 155.79 ± 70.84 | 262.87 ± 130.57 | 9.11 | <0.01 |
图1 展示植物群落组成响应冬季火处理、空间位置、土壤理化性质和土壤微生物特性的变异分区的Venn图。 PP, 空间位置; SM, 土壤微生物特性; SP, 土壤理化性质; TT, 冬季火处理; VT, 植物群落结构。实线矩形框表示典范对应分析(CCA)分析的总惯量(5.58), 即植物群落组成数据100%的变异。CCA分析中总的可约束的特征值为5.04, 意味着这四个变量可解释VT数据90.33%的变异。其中火烧可约束的惯量为5.84%, 土壤微生物特性可约束的惯量为44.07%, 土壤理化性质可约束的惯量为49.98%, 空间位置的约束惯量为27.59%。
Fig. 1 Venn diagram representing the partition of the variation in a response matrix of plant community composition among four sets of explanatory variables (winter fire treatment, spatial location, soil physiochemical properties, and soil microbial properties). PP, spatial location; SM, soil microbial properties; SP, soil physiochemical properties; TT, winter fire treatment; VT, plant community composition. The rectangle represents the total inertia of the Canonical Correspondence Analysis (CCA) ordination (5.58), or 100% of the variation in plant community composition. The sum of the canonical eigenvalues is 5.04, which means that traffic intensity accounts for 90.33% of the variation in plant community composition by these four explanatory variables, of which 5.84% is constrained by winter fire, 44.07% is constrained by soil microbial properties, 49.98% is constrained by soil physiochemical properties, and 27.59% is constrained by spatial location.
图2 左侧展示了冬季火影响植物群落组成和多样性的各个途径的概念模型; 右侧展示了冬季火改变植物群落结构的5种备选假设。 PP, 空间位置; SM, 土壤微生物特性; SP, 土壤物理化学性质; TT, 冬季火处理; VT, 植物群落组成。这5种假设分别是: 假设1, 冬季火直接改变植物群落结构; 假设2, 冬季火改变土壤微生物学特性, 微生物学特性直接改变了植物群落结构; 假设3, 火改变土壤理化性质, 土壤理化性质直接改变了植物群落结构; 假设4, 火烧改变土壤微生物学特征, 土壤微生物学特征通过改变土壤理化性质来改变植被群落结构; 假设5, 火烧改变土壤理化性质, 土壤理化性质通过改变土壤微生物学特征来改变植物群落结构。
Fig. 2 The left panel shows the conceptual model of pathways via which winter fire may affect plant community composition and diversity. The right panel shows the models for the five alternative hypotheses outlying how winter fire may affect plant community structure. PP, spatial location; SM, soil microbial properties; SP, soil physiochemical properties; TT, winter fire treatment; VT, plant community composition. The five hypotheses are (1) winter fire affects plant community structure directly; (2) winter fire alters soil physiochemical properties, which directly affects plant community structure; (3) winter fire alters soil microbial properties, which directly affects plant community structure; (4) winter fire changes soil physiochemical properties, which affects plant community structure indirectly by modifying soil microbial properties; (5) winter fire changes soil microbial properties, which affects plant community structure indirectly by modifying soil physiochemical properties.
图3 结构方程模型分析中最好的两个模型(A和B)。图A (χ2 = 4.6, df = 5, p = 0.469)和图B (χ2 = 2.7, df = 5, p = 0.745)都具有上佳的配适度, B模型优于A模型。 方框表示该变量纳入模型的运算。PD, 植物群落结构; PP, 空间位置; SM, 土壤微生物特性; SP, 土壤理化性质; TT, 冬季火的影响(火烧与未火烧)。在进行结构方程模型分析前, 采用非度量多维尺度分析法对PD、PP、SM和SP数据组进行降维处理。箭头表示具有显著影响(p < 0.05)。箭头上的值表示标准化的路径系数。虚线表示影响不显著。响应变量的R2值表示通过其他相关变量可以解释的变异。
Fig. 3 Final model results of structural equation modeling analysis. A (χ2 = 4.6, df = 5, p = 0.469) and B (χ2 = 2.7, df = 5, p = 0.745) have the best goodness of fit, and model B is better than model A. Square boxes display variables included in the model. PD, plant community structure; PP, spatial location; SM, soil microbial property; SP, soil physiochemical property; TT, winter fire treatment (burned or unburned). Before the structural equation model is applied, non-metric multidimensional scaling is used to reduce the dimensionality of PD, PP, SM and SP. Arrows indicate significant effects (p < 0.05). Values associated with arrows represent standardized path coefficients. Dashed arrows represent that effects are not significant. R2 values associated with response variables indicate the proportion of variation explainable by relationships with other variables.
[27] |
3) [王谢, 向成华, 操国兴, 李贤伟, 文冬菊 ( 2014a). 冬季火烧对川西亚高山草甸土壤理化性质的影响. 草业科学, 31, 811-817.]
DOI URL |
[28] |
Wang X, Xiang CH, Li XW, Wen DJ ( 2014 b). Short-term effects of a winter wildfire on diversity and intensity of soil microbial function in the subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 38, 468-476. (in Chinese with English abstract)
DOI URL |
4) [王谢, 向成华, 李贤伟, 文冬菊 ( 2014b). 冬季火对川西亚高山草地土壤微生物功能多样性及其强度的短期影响. 植物生态学报, 38, 468-476.]
DOI URL |
|
[29] | Wang Z ( 2012). Influences of Warming and N Addition on Plant Community, Soil and Ecosystem C Exchange in Inner Mongolia Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. 10-44. (in Chinese) |
[ 王珍 ( 2012). 增温和氮素添加对内蒙古短花针茅荒漠草原植物群落、土壤及生态系统碳交换的影响. 博士学位论文, 内蒙古农业大学, 呼和浩特. 10-44.] | |
[30] |
Xia J, Wan S ( 2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL |
[1] | Annals Compiling Committee of Daofu County in Sichuan Province ( 1997). Daofu County Annals. Sichuan People Press, Chengdu. (in Chinese) |
[四川省道孚县志编纂委员会 ( 1997). 道孚县志. 四川人民出版社, 成都.] | |
[2] |
Augustine DJ, Brewer P, Blumenthal DM, Derner JD, von Fischer JC ( 2014). Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland. Journal of Arid Environments, 104, 59-66.
DOI URL |
[3] |
Baer SG, Blair JM, Collins SL, Knapp AK ( 2003). Soil resources regulate productivity and diversity in newly established tallgrass prairie. Ecology, 84, 724-735.
DOI URL |
[4] | Bentler PM, Chou CP ( 1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117. |
[5] |
Blair JM ( 1997). Fire, N availability, and plant response in grasslands: a test of the transient maxima hypothesis. Ecology, 78, 2359-2368.
DOI URL |
[6] |
Certini G ( 2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
DOI URL |
[7] |
Choromanska U, DeLuca TH ( 2002). Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology & Biochemistry, 34, 263-271.
DOI URL |
[8] |
da Silva DM, Batalha MA ( 2008). Soil-vegetation relationships in cerrados under different fire frequencies. Plant and Soil, 311, 87-96.
DOI URL |
[9] |
DeBano LF, Conrad CE ( 1978). The effect of fire on nutrients in a chaparral ecosystem. Ecology, 59, 489-497.
DOI URL |
[10] |
Esque TC, Kaye JP, Eckert SE, DeFalco LA, Tracy CR ( 2010). Short-term soil inorganic N pulse after experimental fire alters invasive and native annual plant production in a Mojave Desert shrubland. Oecologia, 164, 253-263.
DOI URL |
[11] |
Hartnett DC, Potgieter AF, Wilson GWT ( 2004). Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. African Journal of Ecology, 42, 328-337.
DOI URL |
[12] |
LeBauer DS, Treseder KK ( 2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL |
[13] |
Lowe PN, Lauenroth WK, Burke IC ( 2003). Effects of nitrogen availability on competition between Bromus tectorum and Bouteloua gracilis. Plant Ecology, 167, 247-254.
DOI URL |
[14] |
Medvedeff CA, Inglett KS, Kobziar LN, Inglett PW ( 2013). Impacts of fire on microbial carbon cycling in subtropical wetlands. Fire Ecology, 9, 21-37.
DOI URL |
[15] |
Milberg P, Lamont BB, Pérez-Fernández MA ( 1999). Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecology, 145, 125-132.
DOI URL |
[16] |
Milchunas DT, Lauenroth WK ( 1995). Inertia in plant community structure: state changes after cessation of nutrient- enrichment stress. Ecological Applications, 5, 452-458.
DOI URL |
[17] |
Nardoto GB, Bustamante MMDC ( 2003). Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuária Brasileira, 38, 955-962.
DOI URL |
[18] |
Neary DG, Klopatek CC, DeBano LF, Ffolliott PF ( 1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51-71.
DOI URL |
[19] |
Paschke MW, McLendon T, Redente EF ( 2000). Original articles: nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems, 3, 144-158.
DOI URL |
[20] |
Prieto-Fernandez A, Villar MC, Carballas M, Carballas T ( 1993). Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an Atlantic forest soil. Soil Biology & Biochemistry, 25, 1657-1664.
DOI URL |
[21] |
Raison RJ ( 1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil, 51, 73-108.
DOI URL |
[22] | Reich PB, Peterson DW, Wedin DA, Wrage K ( 2001). Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology, 82, 1703-1719. |
[23] |
Safford HD, Harrison S ( 2004). Fire effects on plant diversity in serpentine vs. sandstone chaparral. Ecology, 85, 539-548.
DOI URL |
[24] |
Vázquez FJ, Acea MJ, Carballas T ( 1993). Soil microbial populations after wildfire. FEMS Microbiology Ecology, 13, 93-103.
DOI URL |
[25] |
Veen GF, Olff H, Duyts H, van der Putten WH ( 2010). Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology, 91, 828-835.
DOI URL |
[26] |
Wang X, Xiang CH, Li XW, Wen DJ ( 2013). Effects of a winter wildfire on plant community structure and forage quality in subalpine grassland of western Sichuan, China. Chinese Journal of Plant Ecology, 37, 922-932. (in Chinese with English abstract)
DOI URL |
2) [王谢, 向成华, 李贤伟, 文冬菊 ( 2013). 冬季火对川西亚高山草地植物群落结构和牧草质量的影响. 植物生态学报, 37, 922-932.]
DOI URL |
|
[31] |
Zhang YM, Wu N, Zhou GY, Bao WK ( 2005). Changes in enzyme activities of spruce ( Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Applied Soil Ecology, 30, 215-225.
DOI URL |
[27] |
Wang X, Xiang CH, Cao GX, Li XW, Wen DJ ( 2014a). Effects of winter wildfire on soil physical and chemical properties of western Sichuan subalpine grassland. Pratacultural Science, 31, 811-817. (in Chinese with English abstract)
DOI URL |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[3] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[4] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[5] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[6] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[7] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[8] | 温纯, 金光泽. 功能多样性对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2019, 43(2): 94-106. |
[9] | 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174-184. |
[10] | 皮春燕, 刘鑫, 王喆, 包维楷. 苔藓-蓝藻共生体关系与固氮能力研究进展[J]. 植物生态学报, 2018, 42(4): 407-418. |
[11] | 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J]. 植物生态学报, 2018, 42(4): 508-516. |
[12] | 许浩, 胡朝臣, 许士麒, 孙新超, 刘学炎. 外来植物入侵对土壤氮有效性的影响[J]. 植物生态学报, 2018, 42(11): 1120-1130. |
[13] | 周晓兵, 张元明, 陶冶, 吴林. 新疆古尔班通古特沙漠土壤N2O、CH4和CO2通量及其对氮沉降增加的响应[J]. 植物生态学报, 2017, 41(3): 290-300. |
[14] | 谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11): 1149-1156. |
[15] | 王薪琪, 王传宽, 张泰东. 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用[J]. 植物生态学报, 2017, 41(10): 1113-1125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19