植物生态学报 ›› 2017, Vol. 41 ›› Issue (10): 1113-1125.DOI: 10.17521/cjpe.2017.0116
• 综述 • 上一篇
出版日期:
2017-10-10
发布日期:
2017-12-24
通讯作者:
王传宽
基金资助:
Xin-Qi WANG, Chuan-Kuan WANG*(), Tai-Dong ZHANG
Online:
2017-10-10
Published:
2017-12-24
Contact:
Chuan-Kuan WANG
摘要:
几乎所有树木的根系都能与丛枝菌根(AM)真菌或外生菌根(EM)真菌形成共生关系, 从而调节森林生态系统土壤碳(C)、氮(N)循环等功能过程。深入理解不同菌根类型森林土壤C、N循环的差异及其影响机制是重要的生态研究命题。该文明晰了AM与EM森林土壤C、N循环的差异; 基于森林土壤C、N输入、稳定和输出等3个过程剖析了AM和EM树种对土壤C、N循环的影响机制; 比较了不同菌根类型森林土壤C、N循环过程对全球变化的响应; 指出了该研究领域所面临的主要挑战: (1)全面比较研究不同菌根类型森林土壤C、N循环及其相关联的生态系统结构和功能特征, 为提高森林生产力、发挥生态系统服务功能提供理论基础和数据; (2)深入认知不同菌根树种地上凋落物及地下菌根与自由微生物间相互作用对土壤C、N循环的影响, 以阐明不同菌根类型森林土壤C、N循环的潜在机制; (3)改进研究方法, 应用新技术手段, 充分考虑时空尺度效应, 以便能用小尺度的研究结果合理地解释和预测生态系统C、N循环; (4)加强不同菌根类型森林土壤C、N稳定性差异的研究, 以准确评价森林结构和功能对全球变化的响应。
王薪琪, 王传宽, 张泰东. 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用. 植物生态学报, 2017, 41(10): 1113-1125. DOI: 10.17521/cjpe.2017.0116
Xin-Qi WANG, Chuan-Kuan WANG, Tai-Dong ZHANG. New perspectives on forest soil carbon and nitrogen cycling processes: Roles of arbuscular mycorrhizal versus ectomycorrhizal tree species. Chinese Journal of Plant Ecology, 2017, 41(10): 1113-1125. DOI: 10.17521/cjpe.2017.0116
图1 丛枝菌根(AM)与外生菌根(EM)森林土壤碳氮循环的比较示意图。DOC, 溶解性有机碳; DON, 溶解性有机氮; MBC, 微生物生物量碳; MBN, 微生物生物量氮。深灰方框代表AM森林土壤储量较高; 浅灰方框代表EM森林土壤储量较高; 白色方框代表两者储量差异不显著。黑色箭头代表AM森林土壤碳氮通量较高; 灰色箭头代表EM森林土壤碳氮通量较高; 灰色虚线箭头代表两者通量没有显著差异。?代表该通量尚存争议。
Fig. 1 Comparative diagram of soil carbon and nitrogen cycles between arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) forests. DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen. The dark grey boxes represent greater pools in AM than in EM forests, the light ones represent greater ones in EM than in AM forests, and the white ones represent insignificant differences between them. The black arrows represent greater fluxes in AM than in EM forest, the grey ones represent greater ones in EM than in AM forests, and the grey dashed ones represent insignificant differences between them. ? indicates inconsistent measurements of the fluxes.
[1] |
Asghari HR, Cavagnaro TR (2011). Arbuscular mycorrhizas enhance plant interception of leached nutrients.Functional Plant Biology, 38, 219-226.
DOI URL |
[2] |
Austin AT, Zanne AE (2015). Whether in life or in death: Fresh perspectives on how plants affect biogeochemical cycling.Journal of Ecology, 103, 1367-1371.
DOI URL |
[3] |
Averill C (2016). Slowed decomposition in ectomycorrhizal ecosystems is independent of plant chemistry.Soil Biology & Biochemistry, 102, 52-54.
DOI URL |
[4] |
Averill C, Hawkes CV (2016). Ectomycorrhizal fungi slow soil carbon cycling.Ecology Letters, 19, 937.
DOI URL PMID |
[5] |
Averill C, Turner BL, Finzi AC (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.Nature, 505, 543-545.
DOI URL PMID |
[6] |
Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003). Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance ofRussula spp. in a temperate oak savanna. New Phytologist, 160, 239-253.
DOI URL |
[7] |
Baldrian P, Kola?ík M, Stursová M, Kopecky J, Valá?ková V, Větrovsky T, Zif?áková L, Snajdr J, Rídl J, Vl?ek C, Vo?í?ková J (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition.ISME Journal, 6, 248-258.
DOI URL PMID |
[8] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: Root traits as drivers of ecosystem processes.Trends in Ecology & Evolution, 29, 692-699.
DOI URL PMID |
[9] | B?deker I, Clemmensen KE, Boer W, Martin F, Olson ?, Lindahl BD (2014). EctomycorrhizalCortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist, 203, 245-256. |
[10] | Brundrett MC (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis.Plant and Soil, 320, 37-77. |
[11] |
Brzostek ER, Dragoni D, Brown ZA, Phillips RP (2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest.New Phytologist, 206, 1274-1282.
DOI URL PMID |
[12] | Carreiro M, Sinsabaugh R, Repert D, Parkhurst D (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition.Ecology, 81, 2359-2365. |
[13] | Chapin FS III, Matson PA, Vitousek PM (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer, New York. |
[14] |
Cheeke TE, Phillips RP, Brzostek ER, Rosling A, Bever JD, Fransson P (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function.New Phytologist, 214, 432-442.
DOI URL PMID |
[15] |
Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2.Science, 337, 1084-1087.
DOI URL |
[16] |
Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest.Science, 339, 1615-1618.
DOI URL PMID |
[17] |
Cornelissen J, Aerts R, Cerabolini B, Werger M, Heijden MVD (2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy.Oecologia, 129, 611-619.
DOI URL PMID |
[18] | Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?Global Change Biology, 19, 988-995. |
[19] | del Giorgio PA, Cole JJ (1998). Bacterial growth efficiency in natural aquatic systems.Annual Review of Ecology and Systematics, 29, 503-541. |
[20] | Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML (2011). Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2.Ecology Letters, 14, 349-357. |
[21] |
Fernandez CW, Kennedy PG (2016). Revisiting the “Gadgil effect”: Do interguild fungal interactions control carbon cycling in forest soils?New Phytologist, 209, 1382-1394.
DOI URL PMID |
[22] |
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide.Journal of Ecology, 101, 943-952.
DOI URL |
[23] | Gadgil PD, Gadgil RL (1975). Suppression of litter decomposition by mycorrhizal roots ofPinus radiata. New Zealand Forest Service, 5, 35-41. |
[24] | Gadgil RL, Gadgil PD (1971). Mycorrhiza and litter decomposition.Nature, 233, 133. |
[25] | Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgard B (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land.Forest Ecology & Management, 195, 373-384. |
[26] |
Hasegawa S, Macdonald CA, Power SA (2016). Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limitedEucalyptus woodland. Global Change Biology, 22, 1628-1643.
DOI URL PMID |
[27] | Hawkins HJ, Johansen A, George E (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi.Plant and Soil, 226, 275-285. |
[28] |
Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007). Tree species effects on soil organic matter dynamics: The role of soil cation composition.Ecosystems, 10, 999-1018.
DOI URL |
[29] | Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden.Ecology, 87, 2288-2297. |
[30] |
Hodge A, Campbell CD, Fitter AH (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material.Nature, 413, 297-299.
DOI URL PMID |
[31] |
Hodge A, Helgason T, Fitter AH (2010). Nutritional ecology of arbuscular mycorrhizal fungi.Fungal Ecology, 3, 267-273.
DOI URL |
[32] |
Hodge A, Storer K (2015). Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems.Plant and Soil, 386, 1-19.
DOI URL |
[33] |
Holden SR, Berhe AA, Treseder KK (2015). Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire.Soil Biology & Biochemistry, 87, 1-9.
DOI URL |
[34] |
Huang Y, Wang DW, Cai JL, Zheng WS (2011). Review of glomalin-related soil protein and its environmental function in the rhizosphere.Chinese Journal of Plant Ecology, 35, 232-236. (in Chinese with English abstract)[黄艺, 王东伟, 蔡佳亮, 郑维爽 (2011). 球囊霉素相关土壤蛋白根际环境功能研究进展. 植物生态学报, 35, 232-236.]
DOI URL |
[35] |
Iversen CM, Keller JK, Garten Jr CT, Norby RJ (2012). Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment.Global Change Biology, 18, 1684-1697.
DOI URL |
[36] |
Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G (2010). Reduction of forest soil respiration in response to nitrogen deposition.Nature Geoscience, 3, 315-322.
DOI URL |
[37] |
Jastrow JD, Michael Miller R, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005). Elevated atmospheric carbon dioxide increases soil carbon.Global Change Biology, 11, 2057-2064.
DOI URL |
[38] | Jin L, Sun L, Wang Q, Dong M, Wang XJ, Wang Q, Zhang L (2016). Functions of arbuscular mycorrhizas in grassland ecosystems.Acta Ecologica Sinica, 36, 873-882. (in Chinese with English abstract)[金樑, 孙莉, 王强, 董梅, 王晓娟, 王茜, 张亮 (2016). AM真菌在草原生态系统中的功能. 生态学报, 36, 873-882.] |
[39] |
Keller NP, Turner G, Bennett JW (2005). Fungal secondary metabolism—From biochemistry to genomics.Nature Reviews Microbiology, 3, 937-947.
DOI URL PMID |
[40] |
Knicker H (2011). Soil organic N—An under-rated player for C sequestration in soils?Soil Biology & Biochemistry, 43, 1118-1129.
DOI URL |
[41] |
Koele N, Dickie IA, Oleksyn J, Richardson SJ, Reich PB (2012). No globally consistent effect of ectomycorrhizal status on foliar traits.New Phytologist, 196, 845-852.
DOI URL PMID |
[42] | Koide R, Wu T (2003). Ectomycorrhizas and retarded decomposition in aPinus resinosa plantation. New Phytologist, 158, 401-407. |
[43] |
Kraus TEC, Dahlgren RA, Zasoski RJ (2003). Tannins in nutrient dynamics of forest ecosystems—A review.Plant and Soil, 256, 41-66.
DOI URL |
[44] | Lal R, Negassa W, Lorenz K (2015). Carbon sequestration in soil.Current Opinion in Environmental Sustainability, 15, 79-86. |
[45] |
Laliberté E (2016). Below-ground frontiers in trait-based plant ecology.New Phytologist, 213, 1597-1603.
DOI URL PMID |
[46] |
Leifheit EF, Verbruggen E, Rillig MC (2015). Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation.Soil Biology & Biochemistry, 81, 323-328.
DOI URL |
[47] |
Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014). Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis.Plant and Soil, 374, 523-537.
DOI URL |
[48] | Li YJ, Liu ZL, He XY, Tian CJ (2013). Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications.Chinese Journal of Applied Ecology, 24, 861-868. (in Chinese with English abstract)[李元敬, 刘智蕾, 何兴元, 田春杰 (2013). 丛枝菌根共生体的氮代谢运输及其生态作用. 应用生态学报, 24, 861-868.] |
[49] |
Lin G, Mccormack ML, Ma C, Guo D (2016). Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.New Phytologist, 213, 1440-1451.
DOI URL PMID |
[50] |
Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, H?gberg P, Stenlid J, Finlay RD (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest.New Phytologist, 173, 611-620.
DOI URL PMID |
[51] |
Lindahl BD, Tunlid A (2015). Ectomycorrhizal fungi—Potential organic matter decomposers, yet not saprotrophs.New Phytologist, 205, 1443-1447.
DOI URL PMID |
[52] |
Liu MQ, Hu F, Chen XY (2007). A review on mechanisms of soil organic carbon stabilization.Acta Ecologica Sinica, 27, 2642-2650. (in Chinese with English abstract)[刘满强, 胡锋, 陈小云 (2007). 土壤有机碳稳定机制研究进展. 生态学报, 27, 2642-2650.]
DOI URL |
[53] |
Lützow MV, K?gel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review.European Journal of Soil Science, 57, 426-445.
DOI URL |
[54] |
Manzoni S, Taylor P, Richter A, Porporato A, ?gren GI (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils.New Phytologist, 196, 79-91.
DOI URL PMID |
[55] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Lepp?lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.New Phytologist, 207, 505-518.
DOI URL PMID |
[56] |
McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurch R (2010). Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest.Oecologia, 164, 785-795.
DOI URL PMID |
[57] |
Midgley MG, Brzostek E, Phillips RP (2015). Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees.Journal of Ecology, 103, 1454-1463.
DOI URL |
[58] |
Midgley MG, Phillips RP (2014). Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition.Biogeochemistry, 117, 241-253.
DOI URL |
[59] |
Midgley MG, Phillips RP (2016). Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest.Ecology, 97, 3369-3378.
DOI URL PMID |
[60] |
Moore JAM, Jiang J, Patterson CM, Mayes MA, Wang G, Classen AT (2015). Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes.Journal of Ecology, 103, 1442-1453.
DOI URL |
[61] |
Mucha J, Dahm H, Strzelczyk E, Werner A (2006). Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi.Archives of Microbiology, 185, 69-77.
DOI URL PMID |
[62] |
Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment.Biogeochemistry, 111, 601-614.
DOI URL |
[63] |
Mueller KE, Hobbie SE, Chorover J, Reich PB, Eisenhauer N, Castellano MJ, Chadwick OA, Dobies T, Hale CM, Jagodziński AM (2015). Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species.Biogeochemistry, 123, 313-327.
DOI URL |
[64] | Norby RJ, Kauwe DMG, Walker AP, Werner C, Zaehle S, Zak DR (2017). Comments on “mycorrhizal association as a primary control of the CO2 fertilization effect”.Science, 355, 358b. |
[65] |
Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EV (2013). Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest.FEMS Microbiology Ecology, 85, 37-50.
DOI URL PMID |
[66] | Oostra S, Majdi H, Olsson M (2006). Impact of tree species on soil carbon stocks and soil acidity in southern Sweden.Scandinavian Journal of Forest Research, 21, 364-371. |
[67] |
Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment.Ecology Letters, 14, 493-502.
DOI URL PMID |
[68] |
Paterson E, Sim A, Davidson J, Daniell TJ (2016). Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation.Plant and Soil, 408, 243-254.
DOI URL |
[69] |
Paul EA (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization.Soil Biology & Biochemistry, 98, 109-126.
DOI URL |
[70] |
Pellitier PT, Zak DR (2017). Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: Why evolutionary history matters.New Phytologist, 103, 495-496.
DOI URL |
[71] |
Phillips LA, Ward V, Jones MD (2014). Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.ISME Journal, 8, 699-713.
DOI URL PMID |
[72] |
Phillips RP, Brzostek E, Midgley MG (2013). The mycorrhizal- associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests.New Phytologist, 199, 41-51.
DOI URL PMID |
[73] |
Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.Ecology Letters, 14, 187-194.
DOI URL PMID |
[74] |
Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC (2012). Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2.Ecology Letters, 15, 1042-1049.
DOI URL PMID |
[75] |
Prescott CE (2010). Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 101, 133-149.
DOI URL |
[76] | Read D, Perez-Moreno J (2003). Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance?New Phytologist, 157, 475-492. |
[77] |
Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species.Ecology Letters, 8, 811-818.
DOI URL |
[78] |
Rillig MC (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes.Ecology Letters, 7, 740-754.
DOI URL |
[79] |
Rillig MC, Aguilartrigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation.New Phytologist, 205, 1385-1388.
DOI URL PMID |
[80] |
Rillig MC, Mummey DL (2006). Mycorrhizas and soil structure.New Phytologist, 171, 41-53.
DOI URL PMID |
[81] |
Rillig MC, Ramsey PW, Morris S, Paul EA (2003). Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change.Plant and Soil, 253, 293-299.
DOI URL |
[82] | Rillig MC, Wright SF, Eviner VT (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species.Plant and Soil, 238, 325-333. |
[83] |
Scott EE, Rothstein DE (2017). Patterns of DON and DOC leaching losses across a natural N availability gradient in temperate hardwood forests.Ecosystems, 20, 1-16.
DOI URL |
[84] |
Shi ZY, Liu DH, Wang FY, Ding XD (2012a). Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem.Ecology and Environmental Sciences, 21, 404-408. (in Chinese with English abstract)[石兆勇, 刘德鸿, 王发园, 丁效东 (2012a). 菌根类型对森林树木净初级生产力的影响. 生态环境学报, 21, 404-408.]
DOI URL |
[85] |
Shi ZY, Wang FY, Miao YF (2012b). Responses of net primary productivity to air temperature change in forests dominated by different mycorrhizal strategies.Chinese Journal of Plant Ecology, 36, 1165-1171. (in Chinese with English abstract)[石兆勇, 王发园, 苗艳芳 (2012b). 不同菌根类型的森林净初级生产力对气温变化的响应. 植物生态学报, 36, 1165-1171.]
DOI URL |
[86] |
Six J, Bossuyt H, Degryze S, Denef K (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics.Soil & Tillage Research, 79, 7-31.
DOI URL |
[87] |
S?rensen LH (1972). Stabilization of newly formed amino acid metabolites in soil by clay minerals.Soil Science, 114, 5-11.
DOI URL |
[88] |
Soudzilovskaia NA, Mg VDH, Cornelissen JH, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzhanova AA, van Bodegom PM (2015). Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling.New Phytologist, 208, 280-293.
DOI URL PMID |
[89] |
Subke J-A, Voke NR, Leronni V, Garnett MH, Ineson P (2010). Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling.Journal of Ecology, 99, 186-193.
DOI URL |
[90] |
Sulman BN, Brzostek ER, Medici C, Shevliakova E, Menge DN, Phillips RP (2017). Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association.Ecology Letters, 20, 1043-1053.
DOI URL PMID |
[91] |
Talhelm AF, Pregitzer KS, Kubiske ME, Zak DR, Campany CE, Burton AJ, Dickson RE, Hendrey GR, Isebrands JG, Lewin KF, Nagy J, Karnosky DF (2014). Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.Global Change Biology, 20, 2492-2504.
DOI URL PMID |
[92] |
Taylor MK, Lankau RA, Wurzburger N (2016). Mycorrhizal associations of trees have different indirect effects on organic matter decomposition.Journal of Ecology, 104, 1576-1584.
DOI URL |
[93] |
Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect.Science, 353, 72-74.
DOI URL PMID |
[94] | Terrer C, Vicca S, Hungate BA, Phillips RP, Reich PB, Franklin O, Stocker BD, Fisher JB, Prentice IC (2017). Response to comment on “Mycorrhizal association as a primary control of the CO2 fertilization effect”.Science, 355, 358c. |
[95] |
Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010). Increased tree carbon storage in response to nitrogen deposition in the US.Nature Geoscience, 3, 13-17.
DOI URL |
[96] |
Tisdall JM, Oades J (1982). Organic matter and water-stable aggregates in soils.Journal of Soil Science, 33, 141-163.
DOI URL |
[97] |
Treseder KK (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies.New Phytologist, 164, 347-355.
DOI URL |
[98] |
Treseder KK, Allen MF (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition.New Phytologist, 147, 189-200.
DOI URL |
[99] |
van der Heijden M, Martin FM, Selosse MA, Sanders IR (2015). Mycorrhizal ecology and evolution: The past, the present, and the future.New Phytologist, 205, 1406-1423.
DOI URL PMID |
[100] |
Verbruggen E, Jansa J, Hammer EC, Rillig MC (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil?Journal of Ecology, 104, 261-269.
DOI URL |
[101] |
Veresoglou SD, Chen B, Rillig MC (2012). Arbuscular mycorrhiza and soil nitrogen cycling.Soil Biology & Biochemistry, 46, 53-62.
DOI URL |
[102] |
Vesterdal L, Bo E, Christiansen JR, Callesen I, Schmidt IK (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species.Forest Ecology & Management, 264, 185-196.
DOI URL |
[103] |
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013). Do tree species influence soil carbon stocks in temperate and boreal forests?Forest Ecology & Management, 309, 4-18.
DOI URL |
[104] |
Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species.Forest Ecology & Management, 255, 35-48.
DOI URL |
[105] | Wang Q, Wang Q, Wang XJ, Zhang L, Jin L (2015). Research progress on ecological function of arbuscular mycorrhizal network.Chinese Journal of Applied Ecology, 26, 2192-2202. (in Chinese with English abstract)[王茜, 王强, 王晓娟, 张亮, 金樑 (2015). 丛枝菌根网络的生态学功能研究进展. 应用生态学报, 26, 2192-2202.] |
[106] | Wang XQ, Wang CK, Han Y (2015). Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species.Chinese Journal of Plant Ecology, 39, 1033-1043. (in Chinese with English abstract)[王薪琪, 王传宽, 韩轶 (2015). 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 39, 1033-1043.] |
[107] | Werner A, Zadworny M, Idzikowska K (2002). Interaction between Laccaria laccata and Trichoderma virens in co-culture and in the rhizosphere of Pinus sylvestris grown in vitro. Mycorrhiza, 12, 139-145. |
[108] |
Whiteside MD, Digman MA, Gratton E, Treseder KK (2012). Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest.Soil Biology & Biochemistry, 55, 7-13.
DOI URL PMID |
[109] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees.Ecological Monographs, 76, 381-397.
DOI URL |
[110] |
Yin H, Wheeler E, Phillips RP (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates.Soil Biology & Biochemistry, 78, 213-221.
DOI URL |
[111] |
Zerihun A, Bassirirad H (2001). Interspecies variation in nitrogen uptake kinetic responses of temperate forest species to elevated CO2: Potential causes and consequences.Global Change Biology, 7, 211-222.
DOI URL |
[112] | Zheng W, Morris EK, Rillig MC (2014). Ectomycorrhizal fungi in association withPinus sylvestris seedlings promote soil aggregation and soil water repellency. Soil Biology & Biochemistry, 78, 326-331. |
[113] |
Zhu W, Ehrenfeld JG (1996). The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil. Plant and Soil, 179, 109-118.
DOI URL |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[6] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[7] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[8] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[9] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[10] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[11] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[12] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[13] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[14] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[15] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19