植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 134-144.DOI: 10.17521/cjpe.2022.0314
所属专题: 生态学研究的方法和技术
• 方法与技术 • 上一篇
刘尧1,2, 于馨3,4, 于洋5, 胡文浩6, 赖江山1,3,7,*()
收稿日期:
2022-07-26
接受日期:
2022-09-28
出版日期:
2023-01-20
发布日期:
2022-10-07
通讯作者:
*赖江山(lai@njfu.edu.cn)
基金资助:
LIU Yao1,2, YU Xin3,4, YU Yang5, HU Wen-Hao6, LAI Jiang-Shan1,3,7,*()
Received:
2022-07-26
Accepted:
2022-09-28
Online:
2023-01-20
Published:
2022-10-07
Contact:
*LAI Jiang-Shan(lai@njfu.edu.cn)
Supported by:
摘要:
定量评估不同变量对群落组成的贡献是群落生态学分析的热点问题。但在具体的分析情景中, 因子间的共线性与解释率的重叠对评估不同因子重要性造成了较大困难。基于这一问题, R程序包“rdacca.hp”通过引入层次分割法(HP)的理念, 在所有可能的模型子集下为各解释变量(或解释变量组)分配单独效应, 为典范分析中共线性解释变量的相对重要性评估提供了新的定量指标。目前, “rdacca.hp”包已经成为群落生态学分析的重要工具。为进一步促进用户对“rdacca.hp”包的理解与运用, 该文通过引入一个分析塑造甲螨(Oribatida)群落的重要环境和空间驱动因素的实例, 重点展示了使用该程序包进行典范分析的一般步骤。随后对近期应用“rdacca.hp”包开展分析的相关研究进行文献计量学分析, 结果表明该程序包自上线以来已被广泛用作解决生态学、环境科学及相关学科问题的基本定量框架。最后, 该文对“rdacca.hp”包的未来应用和升级进行了展望。总之, 该文旨在使国内学者们进一步加深对“rdacca.hp”包的认识和应用。
刘尧, 于馨, 于洋, 胡文浩, 赖江山. R程序包“rdacca.hp”在生态学数据分析中的应用: 案例与进展. 植物生态学报, 2023, 47(1): 134-144. DOI: 10.17521/cjpe.2022.0314
LIU Yao, YU Xin, YU Yang, HU Wen-Hao, LAI Jiang-Shan. Application of “rdacca.hp” R package in ecological data analysis: case and progress. Chinese Journal of Plant Ecology, 2023, 47(1): 134-144. DOI: 10.17521/cjpe.2022.0314
图1 以3组解释变量X1、X2和X3为例, 使用韦恩图概括了响应变量Y的总变差组成。A, 基于变量的顺序R2的方法, 根据分配的顺序, [a]、[b]和[c]分别为X1、X2和X3的条件效应。B, 基于变差分解和层次分割法, [a]、[b]和[c]分别为X1、X2和X3的边际效应, [d]、[e]和[f]分别为X1、X2和X3两两之间的共同效应, [g]为三者之间的共同效应, X1、X2和X3的单独效应分别为[a] + [d]/2 + [f]/2 + [g]/3、[b] + [d]/2 + [e]/2 + [g]/3以及[c] + [e]/2 + [f]/2 + [g]/3。残差[h]代表了未被X1、X2和X3解释的Y的变差部分。
Fig. 1 Venn diagram representing the variation composition of a response matrix Y regressed against three correlated predictors of X1, X2, and X3. A, According to the order of assignment, [a], [b] and [c] are the conditional effect of X1, X2 and X3, respectively. B, Based on variation partitioning and hierarchical partitioning, [a], [b] and [c] are the marginal effect of X1, X2 and X3, respectively; [d], [e] and [f] are the common effect of X1, X2 and X3, respectively; [g] is the common effect among X1, X2 and X3; the individual effect of X1, X2 and X3 can be expressed as [a] + [d]/2 + [f]/2 + [g]/3, [b] + [d]/2 + [e]/2 + [g]/3 and [c] + [e]/2 + [f]/2 + [g]/3. Residual [h] represents the fraction of Y that is not explained by X1, X2 or X3.
函数 Function | 介绍 Description |
---|---|
rdacca.hp | 运行不限制解释变量数量的变差分解和层次分割, 计算每组解释变量对典范分析中解释变异(R2或校正R2)的边际、共同和单独效应Implements both variation partitioning and hierarchical partitioning in canonical analysis without limiting in the number of predictors/matrices of predictors. Output include the marginal, common, as well as individual effect of each (group) variables to total R2 or adjusted R2 |
permu.hp | 对解释变量的单独效应进行置换检验以评估其显著性 Implements the significance testing for individual contribution from hierarchical partitioning by permutation routine |
plot.rdaccahp | 基于“rdacca.hp”函数的输出, 绘制柱形图展示解释变量单独效应 Plot a bar plot of the individual contribution of predictors based on the output of rdacca.hp() |
表1 “rdacca.hp”包的函数介绍
Table 1 Function of “rdacca.hp” package
函数 Function | 介绍 Description |
---|---|
rdacca.hp | 运行不限制解释变量数量的变差分解和层次分割, 计算每组解释变量对典范分析中解释变异(R2或校正R2)的边际、共同和单独效应Implements both variation partitioning and hierarchical partitioning in canonical analysis without limiting in the number of predictors/matrices of predictors. Output include the marginal, common, as well as individual effect of each (group) variables to total R2 or adjusted R2 |
permu.hp | 对解释变量的单独效应进行置换检验以评估其显著性 Implements the significance testing for individual contribution from hierarchical partitioning by permutation routine |
plot.rdaccahp | 基于“rdacca.hp”函数的输出, 绘制柱形图展示解释变量单独效应 Plot a bar plot of the individual contribution of predictors based on the output of rdacca.hp() |
数据框 Data frame | 介绍 Description |
---|---|
mite | 物种多度矩阵, 包含70个采样点的共计35种甲螨形态种的个体计数 Species abundance matrix that contains the abundance of 35 oribatid mites morphospecies at 70 sampling sites |
mite.env | 环境因子矩阵, 包含70个采样点的共计5种环境变量: 基质密度、基质含水量、基质类型、灌丛密度和微地形特征 Environmental matrix that contains 5 environmental variables at 70 sampling sites, including substrate density, water content of the substrate, substrate type, shrub density, and microtopography |
mite.pcnm | 空间因子矩阵, 基于70个采样点的地理坐标, 通过邻体矩阵主坐标分析(PCNM)构建的特征向量, 反映了70个采样点的潜在空间结构 Spatial matrix, which is based on the geographic coordinates of 70 sampling sites and constructed by principal coordinates of neighbour matrices (PCNM) (Borcard & Legendre, |
表2 R语言“vegan”包的甲螨多度及环境和空间因子数据集
Table 2 Oribatid mites abundance dataset with environmental and spatial variables in R package “vegan”
数据框 Data frame | 介绍 Description |
---|---|
mite | 物种多度矩阵, 包含70个采样点的共计35种甲螨形态种的个体计数 Species abundance matrix that contains the abundance of 35 oribatid mites morphospecies at 70 sampling sites |
mite.env | 环境因子矩阵, 包含70个采样点的共计5种环境变量: 基质密度、基质含水量、基质类型、灌丛密度和微地形特征 Environmental matrix that contains 5 environmental variables at 70 sampling sites, including substrate density, water content of the substrate, substrate type, shrub density, and microtopography |
mite.pcnm | 空间因子矩阵, 基于70个采样点的地理坐标, 通过邻体矩阵主坐标分析(PCNM)构建的特征向量, 反映了70个采样点的潜在空间结构 Spatial matrix, which is based on the geographic coordinates of 70 sampling sites and constructed by principal coordinates of neighbour matrices (PCNM) (Borcard & Legendre, |
图2 5种环境因子对甲螨物种多度影响的相对重要性。变差分解和层次分割分析结果使用UpSet图来呈现。右侧点阵图中, 每行对应一个环境因子。对于每一列, 孤立黑点表示各环境因子的边际效应, 多点间连线表示这些环境因子间的共同效应, 各组分解释的变差百分比(来自变差分解)展示在上方柱形图中。左侧柱形图为各环境因子的单独效应(来自层次分割), 其值等同于该环境因子的边际效应加上与其他环境因子的共同效应的平均分配值。*, p < 0.05; ***, p < 0.001。
Fig. 2 UpSet matrix layout of variation partitioning and hierarchical partitioning results to show the relative importance of five environmental factors on oribatid mites abundance. In the dot-matrix plot on the right, each row corresponds to an environmental factor. For each column, the isolated black dot represents the marginal effect of each environmental factor, lines connecting multiple dots represent the common effect among these corresponding environmental factors, and the percentage of variation explained by each component (from variation partitioning) are shown in the top column diagram. Column diagram on the left shows individual effect of each environmental factor (from hierarchical partitioning), its value is equal to its marginal effect plus its average shared common effect with other environmental factors. *, p < 0.05; ***, p < 0.001.
图3 空间和环境因子对甲螨物种多度影响的相对重要性。变差分解和层次分割分析结果使用UpSet图来呈现。右侧点阵图中, 3列分别表示空间因子和环境因子的边际效应以及二者的共同效应(来自变差分解)。左侧柱形图表示二者的单独效应(来自层次分割)。***, p < 0.001。
Fig. 3 UpSet matrix layout of variation partitioning and hierarchical partitioning results to show the relative importance of spatial and environmental factors on oribatid mites abundance. In the dot-matrix plot on the right, three columns represent the marginal effect of spatial factors, the marginal effect of environmental factors, and the common effect between them, respectively (from variation partitioning). Column diagram on the left shows individual effect of spatial and environmental factors (from hierarchical partitioning). ***, p < 0.001.
图4 引用“rdacca.hp”包的论文发表时间及数量统计。虚线表示“rdacca.hp”包相关的方法学论文的正式发表时间。
Fig. 4 Statistics of published papers citing “rdacca.hp” package (publication time and number of published paper). Dashed line indicates the publication time of methodological paper related to “rdacca.hp” package.
图5 引用“rdacca.hp”包的论文所属的大类学科(红色)、论文中涉及的研究区域或环境类型(绿色)、典范分析的响应变量(蓝色)和解释变量类别(橙色)关键词的共现网络。连线表示关键词的共现关系, 节点大小和连线粗细代表了对应文献的数量。典范分析中解释变量的相对重要性分析均来自“rdacca.hp”包。
Fig. 5 Co-occurrence network of subject (red), study area or environment type (green), response variables (blue) and predictor variables (orange) key words according to published papers citing “rdacca.hp” package. Lines represent the co-occurrence relationship of keywords, node size and line width represent the number of related papers. All of the relative importance of predictors in canonical analysis are from “rdacca.hp” package.
图6 引用“rdacca.hp”包的论文中所涉及典范分析的响应变量类型及数量统计。CCA, 典范对应分析; db-RDA, 基于距离的冗余分析; RDA, 冗余分析。
Fig. 6 Statistics of published papers citing “rdacca.hp” package (type and number of response variables). CCA, canonical correspondence analysis; db-RDA, distance-based redundancy analysis; RDA, redundancy analysis.
[1] |
Blanchet FG, Legendre P, Borcard D (2008). Forward selection of explanatory variables. Ecology, 89, 2623-2632.
DOI PMID |
[2] |
Borcard D, Legendre P (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68.
DOI URL |
[3] |
Borcard D, Legendre P, Drapeau P (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045-1055.
DOI URL |
[4] | Burnhan KP, Anderson DR (2004). Model Selection and Multimodel Inference: a Practical Information-theoretic Approach. 2nd ed. Springer-Verlag, New York. 10. |
[5] |
Chen Q, Long CY, Chen JW, Cheng XL (2021). Differential response of soil CO2, CH4, and N2O emissions to edaphic properties and microbial attributes following afforestation in central China. Global Change Biology, 27, 5657-5669.
DOI URL |
[6] |
Cheng M, Wang Y, Zhu JX, Pan Y (2022). Precipitation dominates the relative contributions of climate factors to grasslands spring phenology on the Tibetan Plateau. Remote Sensing, 14, 517. DOI: 10.3390/rs14030517.
DOI |
[7] | Chevan A, Sutherland M (1991). Hierarchical partitioning. The American Statistician, 45, 90-96. |
[8] |
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357-365.
DOI URL |
[9] |
Cox Jr LA (1985). A new measure of attributable risk for public health applications. Management Science, 31, 800-813.
DOI URL |
[10] |
Cui ZQ, Kang HL, Wang WL, Guo WZ, Guo MM, Chen ZX (2022). Vegetation restoration restricts rill development on dump slopes in coalfields. Science of the Total Environment, 820, 153203. DOI: 10.1016/j.scitotenv.2022.153203.
DOI |
[11] |
Duan YW, Sun Q, Werne JP, Hou JZ, Yang H, Wang Q, Khormali F, Chen FH (2022a). The impact of precipitation on the distributions of branched tetraethers in alkaline soils. Organic Geochemistry, 169, 104410. DOI: 10.1016/j.orggeochem.2022.104410.
DOI |
[12] |
Duan YW, Sun Q, Werne JP, Hou JZ, Yang H, Wang Q, Khormali F, Xia DS, Chu GQ, Chen FH (2022b). General Holocene warming trend in arid Central Asia indicated by soil isoprenoid tetraethers. Global and Planetary Change, 215, 103879. DOI: 10.1016/j.gloplacha.2022.103879.
DOI |
[13] |
Gao J, Nunes RF, O’Shea K, Saylor GL, Bu LJ, Kang YG, Duan XD, Dionysiou DD, Luo SL (2022). UV/sodium percarbonate for bisphenol A treatment in water: impact of water quality parameters on the formation of reactive radicals. Water Research, 219, 118457. DOI: 10.1016/j.watres.2022.118457.
DOI |
[14] |
Gao YX, Wang L, Hu XQ, Zhang ZL, Liu BG, Zhang XH, Wang GX (2021). Rapid adaptive responses of rosette-type macrophyte Vallisneria natans juveniles to varying water depths: the role of leaf trait plasticity. Ecology and Evolution, 11, 14268-14281.
DOI URL |
[15] | Genizi A (1993). Decomposition of R2 in multiple regression with correlated regressors. Statistica Sinica, 3, 407-420. |
[16] |
Gou MM, Li L, Ouyang S, Wang N, La LM, Liu CF, Xiao WF (2021). Identifying and analyzing ecosystem service bundles and their socioecological drivers in the Three Gorges Reservoir Area. Journal of Cleaner Production, 307, 127208. DOI: 10.1016/j.jclepro.2021.127208.
DOI |
[17] |
Graham MH (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84, 2809-2815.
DOI URL |
[18] |
Grömping U (2007). Estimators of relative importance in linear regression based on variance decomposition. The American Statistician, 61, 139-147.
DOI URL |
[19] |
Guo X, Feng JJ, Shi Z, Zhou XS, Yuan MT, Tao XY, Hale L, Yuan T, Wang JJ, Qin YJ, Zhou AF, Fu Y, Wu LY, He ZL, van Nostrand JD, et al. (2018). Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 8, 813-818.
DOI |
[20] |
Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-108.
DOI |
[21] |
Hu LL, Shan K, Huang LC, Li YR, Zhao L, Zhou QC, Song LR (2021). Environmental factors associated with cyanobacterial assemblages in a mesotrophic subtropical plateau lake: a focus on bloom toxicity. Science of the Total Environment, 777, 146052. DOI: 10.1016/j.scitotenv.2021.146052.
DOI |
[22] |
Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, Hector A, Schmid B (2018). Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology Letters, 21, 763-778.
DOI PMID |
[23] |
Johnson JW, Lebreton JM (2004). History and use of relative importance indices in organizational research. Organizational Research Methods, 7, 238-257.
DOI URL |
[24] |
Ke B, Hu WH, Huang DM, Zhang J, Lin XT, Li CH, Jin XJ, Chen J (2022). Three-dimensional building morphology impacts on PM2.5 distribution in urban landscape settings in Zhejiang, China. Science of the Total Environment, 826, 154094. DOI: 10.1016/j.scitotenv.2022.154094.
DOI |
[25] |
Kong WB, Yao YF, Hou LC, Bao KQ, Zhang LQ, Wei XR (2022). Effects of vegetation presence on soil net N mineralization are independent of landscape position and vegetation type in an eroding watershed. Agriculture, Ecosystems & Environment, 325, 107743. DOI: 10.1016/j.agee.2021.107743.
DOI |
[26] |
Kreft H, Jetz W (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 104, 5925-5930.
DOI PMID |
[27] | Kruskal W (1987). Relative importance by averaging over orderings. The American Statistician, 41, 6-10. |
[28] |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022a). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
DOI URL |
[29] |
Lai JS, Zou Y, Zhang S, Zhang XG, Mao LF (2022b). glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15, 1302-1307.
DOI URL |
[30] |
Legendre P, Gallagher ED (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271-280.
DOI PMID |
[31] | Legendre P, Legendre L (2012). Numerical Ecology. 3rd ed. Elsevier, Amsterdam. |
[32] |
Li S, Yao Q, Liu JJ, Yu ZH, Li YS, Jin J, Liu XB, Wang GH (2022). Liming mitigates the spread of antibiotic resistance genes in an acid black soil. Science of the Total Environment, 817, 152971. DOI: 10.1016/j.scitotenv.2022.152971.
DOI |
[33] | Lindeman RH, Merenda PF, Gold RZ (1980). Introduction to Bivariate and Multivariate Analysis. Scott Foresman, Glenview, USA. |
[34] |
Liu Y, Bing HJ, Wu YH, Zhu H, Tian X, Wang ZG, Chang RY (2022a). Nitrogen addition promotes soil phosphorus availability in the subalpine forest of eastern Tibetan Plateau. Journal of Soils and Sediments, 22, 1-11.
DOI |
[35] |
Liu YZ, Shen HH, Ge G, Xing AJ, Tang ZY, Fang JY (2022b). Classification and distribution of evergreen broad-leaved forests in Jiangxi, East China. Journal of Plant Ecology, rtac059. DOI: 10.1093/jpe/rtac059.
DOI |
[36] |
Mac Nally R, Walsh CJ (2004). Hierarchical partitioning public-domain software. Biodiversity and Conservation, 13, 659-660.
DOI URL |
[37] |
Mei N, Zhang XZ, Wang XQ, Peng C, Gao HJ, Zhu P, Gu Y (2021). Effects of 40 years applications of inorganic and organic fertilization on soil bacterial community in a maize agroecosystem in northeast China. European Journal of Agronomy, 130, 126332. DOI: 10.1016/j.eja.2021.126332.
DOI |
[38] |
Mood AM (1969). Macro-analysis of the American educational system. Operations Research, 17, 770-784.
DOI URL |
[39] | Newton RG, Spurrell DJ (1967). Examples of the use of elements for clarifying regression analyses. Journal of the Royal Statistical Society, 16, 165-172. |
[40] |
Peres-Neto PR, Legendre P, Dray S, Borcard D (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614-2625.
DOI PMID |
[41] |
Rao QY, Su HJ, Ruan LW, Deng XW, Wang LT, Rao X, Liu JR, Xia WL, Xu PK, Shen H, Chen J, Xie P (2021). Stoichiometric and physiological mechanisms that link hub traits of submerged macrophytes with ecosystem structure and functioning. Water Research, 202, 117392. DOI: 10.1016/j.watres.2021.117392.
DOI |
[42] |
Ren TT, He NP, Liu ZG, Li MX, Zhang JH, Li A, Wei CZ, Lü XT, Han XG (2021). Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecological Indicators, 130, 108049. DOI: 10.1016/j.ecolind.2021.108049.
DOI |
[43] |
Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156-173.
DOI URL |
[44] | Šmilauer P, Lepš J (2014). Multivariate Analysis of Ecological Data Using CANOCO 5. 2nd ed. Cambridge University Press, Cambridge, USA. |
[45] |
Tao H, Song KS, Liu G, Wen ZD, Wang Q, Du YX, Lyu LL, Du J, Shang YX (2021). Songhua River Basin’s improving water quality since 2005 based on Landsat observation of water clarity. Environmental Research, 199, 111299. DOI: 10.1016/j.envres.2021.111299.
DOI |
[46] |
van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews of the Cambridge Philosophical Society, 94, 1220-1245.
DOI PMID |
[47] |
Wang F, Kong WD, Ji MK, Zhao K, Chen H, Yue LY, Dong XB (2022a). Grazing greatly reduces the temporal stability of soil cellulolytic fungal community in a steppe on the Tibetan Plateau. Journal of Environmental Sciences, 121, 48-57.
DOI URL |
[48] |
Wang J, Liao LR, Wang GL, Liu HF, Wu Y, Liu GB, Zhang C (2022b). N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence. Science of the Total Environment, 804, 150148. DOI: 10.1016/j.scitotenv.2021.150148.
DOI |
[49] | Wang J, Liao LR, Ye ZC, Liu HF, Zhang C, Zhang L, Liu GB, Wang GL (2022c). Different bacterial co-occurrence patterns and community assembly between rhizosphere and bulk soils under N addition in the plant-soil system. Plant and Soil, 471, 697-713. |
[50] |
Wang WJ, Wen J, Xiang WQ, Malabrigo Jr PL, Ren MX (2022d). Soil bacterial and fungal communities respond differently to Bombax ceiba (Malvaceae) during reproductive stages of rice in a traditional agroforestry system. Plant and Soil, 479, 543-558.
DOI |
[51] |
Wang Y, Yang XD, Ali A, Lv GH, Long YX, Wang YY, Ma YG, Xu CC (2020). Flowering phenology shifts in response to functional traits, growth form, and phylogeny of woody species in a desert area. Frontiers in Plant Science, 11, 536. DOI: 10.3389/fpls.2020.00536.
DOI |
[52] |
Xiao X, Xie GX, Yang ZH, He N, Yang D, Liu MD (2021). Variation in abundance, diversity, and composition of nirK and nirS containing denitrifying bacterial communities in a red paddy soil as affected by combined organic-chemical fertilization. Applied Soil Ecology, 166, 104001. DOI: 10.1016/j.apsoil.2021.104001.
DOI |
[53] |
Xie L, Chen SF, Feng YY, Li Y, Wang L, He LH, Huang LQ, Wu J, Guo K, Ding H, Fang YM (2022). Mismatch between specific and genetic diversity in an evergreen broadleaf forest in southeast china: a study case of 10.24 ha forest dynamics plot of Huangshan. Frontiers in Plant Science, 12, 706006. DOI: 10.3389/fpls.2021.706006.
DOI |
[54] |
Xiong QL, Luo XJ, Liang PH, Xiao Y, Xiao Q, Sun H, Pan KW, Wang LX, Li LJ, Pang XY (2020). Fire from policy, human interventions, or biophysical factors? Temporal-spatial patterns of forest fire in southwestern China. Forest Ecology and Management, 474, 118381. DOI: 10.1016/j.foreco.2020.118381.
DOI |
[55] |
Xu HD, Yu MK, Cheng XR (2021). Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations. Ecological Indicators, 129, 107932. DOI: 10.1016/j.ecolind.2021.107932.
DOI |
[56] |
Yan BS, Duan MC, Wang RC, Li JJ, Wei FR, Chen JR, Wang J, Wu Y, Wang GL (2022a). Planted forests intensified soil microbial metabolic nitrogen and phosphorus limitation on the Loess Plateau, China. Catena, 211, 105982. DOI: 10.1016/j.catena.2021.105982.
DOI |
[57] |
Yan ZW, Wu L, Lv T, Tong C, Gao ZY, Liu Y, Xing B, Chao CX, Li Y, Wang LG, Liu CH, Yu D (2022b). Response of spatio-temporal changes in sediment phosphorus fractions to vegetation restoration in the degraded river-lake ecotone. Environmental Pollution, 308, 119650. DOI: 10.1016/j.envpol.2022.119650.
DOI |
[58] |
Yang SQ, Zhao WW, Pereira P (2020). Determinations of environmental factors on interactive soil properties across different land-use types on the Loess Plateau, China. Science of the Total Environment, 738, 140270. DOI: 10.1016/j.scitotenv.2020.140270.
DOI |
[59] |
Zhai DL, Thaler P, Luo YQ, Xu JC (2021). The powdery mildew disease of rubber (Oidium heveae) is jointly controlled by the winter temperature and host phenology. International Journal of Biometeorology, 65, 1707-1718.
DOI |
[60] |
Zhang B, Tang GL, Luo HL, Yin H, Zhang ZH, Xue J, Huang CB, Lu Y, Shareef M, Gao XP, Zeng FJ (2021). Topsoil nutrients drive leaf carbon and nitrogen concentrations of a desert phreatophyte in habitats with different shallow groundwater depths. Water, 13, 3093. DOI: 10.3390/w13213093.
DOI |
[61] |
Zhang Y, Zhang HC, Liu Q, Duan LZ, Zhou QC (2023). Total nitrogen and community turnover determine phosphorus use efficiency of phytoplankton along nutrient gradients in plateau lakes. Journal of Environmental Sciences, 124, 699-711.
DOI URL |
[62] |
Zhao YF, Wang X, Jiang SL, Xiao JJ, Li J, Zhou XH, Liu HY, Hao ZG, Wang KC (2022). Soil development mediates precipitation control on plant productivity and diversity in alpine grasslands. Geoderma, 412, 115721. DOI: 10.1016/j.geoderma.2022.115721.
DOI |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 孙茜, 薛子可, 解琳琳, 贺学礼, 赵丽莉. 沙冬青及其伴生植物深色有隔内生真菌物种多样性[J]. 植物生态学报, 2017, 41(7): 729-737. |
[3] | 许涵, 李意德, 骆土寿, 林明献, 陈德祥, 莫锦华, 罗文, 黄豪. 达维台风对海南尖峰岭热带山地雨林群落的影响[J]. 植物生态学报, 2008, 32(6): 1323-1334. |
[4] | 沈琪, 刘珂, 李世玉, 张骏, 蒋跃平, 葛滢, 常杰. 杭州西溪湿地植物组成及其与水位光照的关系[J]. 植物生态学报, 2008, 32(1): 114-122. |
[5] | Pierre Legendre. β-多样性的研究:应用多元回归和典范分析研究生态方差的分解[J]. 植物生态学报, 2007, 31(5): 976-981. |
[6] | 李兴东. 典范分析法在黄河三角洲莱州湾滨海区盐生植物群落研究中的应用[J]. 植物生态学报, 1988, 12(4): 300-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19