植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1096-1109.DOI: 10.17521/cjpe.2024.0174  cstr: 32100.14.cjpe.2024.0174

• 研究论文 • 上一篇    下一篇

基于多物候指标的人工饲草长势监测及产量估测

严文秀1, 赵诗晗1, 郑春燕3, 张萍1, 沈海花4, 常锦峰1, 徐亢2,*()()   

  1. 1浙江大学环境与资源学院, 杭州 321058
    2无锡学院环境科学与工程学院, 江苏无锡 214105
    3中国科学院遗传与发育生物学研究所农业资源研究中心, 石家庄 050022
    4中国科学院植物研究所植被与环境变化重点实验室, 北京 100093
  • 收稿日期:2024-05-24 接受日期:2024-09-01 出版日期:2025-07-20 发布日期:2024-09-01
  • 通讯作者: *徐亢, E-mail: xukang@cwxu.edu.cn
  • 作者简介:ORCID:徐亢: 0000-0002-0840-9332
  • 基金资助:
    科技部重点研发计划(2021YFE0114500);中国科学院A类战略性先导科技专项(XDA26010303);中国科学院A类战略性先导科技专项(XDA26010301)

Growth monitoring and yield estimation of forage based on multiple phenological indicators

YAN Wen-Xiu1, ZHAO Shi-Han1, ZHENG Chun-Yan3, ZHANG Ping1, SHEN Hai-Hua4, CHANG Jin-Feng1, XU Kang2,*()()   

  1. 1College of Environment and Resources, Zhejiang University, Hangzhou 321058, China
    2School of Environmental Science and Engineering, Wuxi University, Wuxi, Jiangsu 214105, China
    3Agricultural Resources Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
    4Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2024-05-24 Accepted:2024-09-01 Online:2025-07-20 Published:2024-09-01
  • Supported by:
    Key R&D Program of the Ministry of Science and Technology(2021YFE0114500);Category A Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26010303);Category A Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26010301)

摘要:

为了促进人工饲草生产专业化和智能化, 实时监测饲草的生长状况和准确评估产量变得至关重要。该研究以不同肥度处理下青贮玉米(Zea mays)及燕麦(Avena sativa)两种主要饲草为研究对象, 基于物候相机照片提取的植被绿度指数(GCC)及无人机影像提取的归一化植被指数(NDVI)、叶片叶绿素指数(LCI), 在站点尺度上探讨了可见光物候相机在追踪饲草生长高度与定量估算产量方面的应用潜力。主要结果: (1)施氮量影响人工饲草的物候指标和收获指标, 高肥处理下的青贮玉米和中肥处理下的燕麦生长期长度最长(分别是(68 ± 5)和(59 ± 1)天), 相应的产量最高(分别是(28 548.30 ± 4 269.30)和(5 180.70 ± 1 939.05) kg·hm-2); (2) GCC、LCI与人工饲草株高的相关性最好, 尤其是在GCC达到绿度峰值(POP)前(R2分别是0.86和0.49), 且GCC对青贮玉米的株高动态捕捉偏差最小; (3)人工饲草物候指标能有效预测最终产量(青贮玉米R2为0.829, 燕麦R2为0.935)。该研究证实了物候相机能有效捕捉饲草的生长动态变化并实现产量预测, 所发展的基于物候指标的日尺度实时监测技术将为优化田间管理, 实现精准农业并促进人工饲草规模化生产提供有效手段。

关键词: 物候相机, 植被绿度指数, 人工饲草, 产量估测, 精准农业

Abstract:

Aims Smart agriculture requires real-time monitoring of crop growth and accurate yield prediction. In this study, we aim to investigating the capacity for using multiple phenological indicators from phenocam images to monitoring forage growth and predicting forage yield.
Methods Phenocam and unmanned aerial vehicle (UAV) images were taken during a one-year field experiment on the forage production of two forage species, silage maize (Zea mays) and oats (Avena sativa), under different fertilizer treatments. Based on the green chromatic coordinate (GCC) extracted from phenocam images, and the normalized difference vegetation index (NDVI) and leaf chlorophyll index (LCI) extracted from UAV images, we explored the capacity of using phenocams in tracking the growth status and estimating forage yield at the site scale.
Important findings (1) Nitrogen application rate affected the phenological metrics and harvest index of the forage grasses. The longest growing period ((68 ± 5) d) and the highest dry matter yield ((28 548.30 ± 4 269.30) kg·hm-2) for silage maize were observed under high fertilizer treatment, while for oats, the longest growing period ((59 ± 1) d) and the highest dry matter yield ((5 180.70 ± 1 939.05) kg·hm-2) were found under medium fertilizer treatment. (2) GCC and LCI showed high correlation with plant height. Before reaching the position of peak greenness (POP), GCC can well capture the dynamics of the plant height (R2 was 0.86 for silage maize and 0.49 for oats), and had the smallest bias in capturing the plant height dynamics of silage maize. (3) The phenological indicators from phenocam can effectively predict forage yield (R2 was 0.829 for silage maize, 0.935 for oat). This study confirmed that phenocam can effectively capture the dynamics of forage growth and predict yield. The phenological indicators from phenocam could provide an effective way for real-time monitoring of forage growth and for informing management practices.

Key words: phenocam, green chromatic ccoordinate, forage, yield estimation, precision agriculture