植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1082-1095.DOI: 10.17521/cjpe.2024.0434 cstr: 32100.14.cjpe.2024.0434
张斌, 张浩成, 乔天, 吕治兵, 许亚男, 李雪芹, 原向阳, 冯美臣, 张美俊*()
收稿日期:
2024-12-04
接受日期:
2025-04-08
出版日期:
2025-07-20
发布日期:
2025-07-28
通讯作者:
*张美俊, E-mail: meijunz@126.com基金资助:
ZHANG Bin, ZHANG Hao-Cheng, QIAO Tian, LÜ Zhi-Bing, XU Ya-Nan, LI Xue-Qin, YUAN Xiang-Yang, FENG Mei-Chen, ZHANG Mei-Jun*()
Received:
2024-12-04
Accepted:
2025-04-08
Online:
2025-07-20
Published:
2025-07-28
Supported by:
摘要: 植物营养成分积累与植物生存和产量密切相关, 从植物各器官营养成分变化角度探求接种丛枝菌根真菌(AMF)对干旱胁迫植物的调控, 可为运用AMF增强植物抗旱性提供理论依据。该研究采用盆栽实验, 以燕麦(Avena sativa)品种‘坝莜1号’为材料, 设置两个土壤相对含水量(田间持水量的75%和55%), 并分别设置接种AMF和未接种2个处理。在燕麦拔节期和灌浆期取样测定侵染率, 各器官非结构性碳水化合物(NSC)及碳(C)、氮(N)、磷(P)含量; 成熟期测定燕麦籽粒产量。结果表明: 干旱胁迫接种AMF, AMF侵染率, 燕麦株高、根冠比显著增加, 籽粒产量显著提高13.31%, 生长指标和产量提高的幅度高于正常供水接种AMF提高的幅度; 茎、叶可溶性糖含量显著增加; 根、茎、叶C、N、P含量显著提高, 其中对叶P含量影响最大; 极显著提高叶C:N, 降低叶N:P。叶可溶性糖和茎C、根N含量分别是解释遭受干旱胁迫和接种AMF时引起燕麦生长及籽粒产量变化的重要调节指标。以上结果表明: 干旱胁迫下接种AMF, 通过增加AMF侵染率, 协同提高燕麦器官可溶性糖和C、N、P含量, 并调节叶C:N和N:P, 增强燕麦抗旱性, 提高燕麦籽粒产量。
张斌, 张浩成, 乔天, 吕治兵, 许亚男, 李雪芹, 原向阳, 冯美臣, 张美俊. 接种丛枝菌根真菌对干旱胁迫燕麦非结构性碳水化合物及碳氮磷化学计量特征的影响. 植物生态学报, 2025, 49(7): 1082-1095. DOI: 10.17521/cjpe.2024.0434
ZHANG Bin, ZHANG Hao-Cheng, QIAO Tian, LÜ Zhi-Bing, XU Ya-Nan, LI Xue-Qin, YUAN Xiang-Yang, FENG Mei-Chen, ZHANG Mei-Jun. Effect of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrates and C, N and P stoichiometry in oat plants under drought stress. Chinese Journal of Plant Ecology, 2025, 49(7): 1082-1095. DOI: 10.17521/cjpe.2024.0434
图1 丛枝菌根真菌(AMF)对燕麦根系的侵染。A, 75%土壤相对含水量未接种AMF。B, 75%土壤相对含水量接种AMF。C, 55%土壤相对含水量未接种AMF。D, 55%土壤相对含水量接种AMF。
Fig. 1 Arbuscular mycorrhizal fungi (AMF) colonization to oat root. A, 75% soil relative water content without AMF inoculation. B, 75% soil relative water content with AMF inoculation. C, 55% soil relative water content without AMF inoculation. D, 55% soil relative water content with AMF inoculation.
图2 接种丛枝菌根真菌(AMF)对干旱胁迫燕麦AMF侵染率、株高、根冠比及籽粒产量的影响(平均值±标准差)。W和A表示水分处理和接种处理, 后面数值为F值。*表示水分和接种处理及其交互作用在0.05水平有显著影响, NS表示影响不显著。同一生育时期不同小写字母表示处理间差异显著(p < 0.05)。75%NAMF, 75%土壤相对含水量未接种AMF; 75%AMF, 75%土壤相对含水量接种AMF; 55%NAMF, 55%土壤相对含水量未接种AMF; 55%AMF, 55%土壤相对含水量接种AMF。
Fig. 2 Effects of arbuscular mycorrhizal fungi (AMF) inoculation on AMF colonization rate, plant height, root-to-shoot ratio and grain yield of oat under drought stress (mean ± SE). W and A represented water treatment and AMF treatment, and the following values are F values. * indicated that soil water, AMF and their interactions had significant influence (p < 0.05), NS indicated no significance. Different lowercase letters at same growth stage indicated significant difference among treatments (p < 0.05). 75%NAMF, 75% soil relative water content without AMF inoculation; 75%AMF, 75% soil relative water content with AMF inoculation; 55%NAMF, 55% soil relative water content without AMF inoculation; 55%AMF, 55% soil relative water content with AMF inoculation.
图3 接种丛枝菌根真菌(AMF)对干旱胁迫燕麦各器官非结构性碳水化合物(NSC)的影响(平均值±标准差)。W和A表示水分处理和接种处理, 后面数值为F值。*表示水分和接种处理及其交互作用在0.05水平有显著影响, NS表示影响不显著。同一生育时期不同小写字母表示处理间差异显著(p < 0.05)。75%NAMF, 75%土壤相对含水量未接种AMF; 75%AMF, 75%土壤相对含水量接种AMF; 55%NAMF, 55%土壤相对含水量未接种AMF; 55%AMF, 55%土壤相对含水量接种AMF。
Fig. 3 Effects of arbuscular mycorrhizal fungi (AMF) inoculation on non-structural carbohydrates (NSC) of oat organs under drought stress (mean ± SE). W and A represented water treatment and AMF treatment, and the following values are F values. * indicated that soil water, AMF and their interactions had significant influence (p < 0.05), NS indicated no significance. Different lowercase letters of the same organ at the same growth stage indicated significant difference among treatments (p < 0.05). 75%NAMF, 75% soil relative water content without AMF inoculation; 75%AMF, 75% soil relative water content with AMF inoculation; 55%NAMF, 55% soil relative water content without AMF inoculation; 55%AMF, 55% soil relative water content with AMF inoculation.
生育时期 Growth stage | 器官 Organ | 处理 Treatment | C | N | P | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 根 Root | W | 529.24* | 85.09* | 85.16* | 57.00* | 2.48 NS | 69.60* |
A | 104.57* | 123.01* | 47.47* | 2.63NS | 30.53* | 4.55 NS | ||
W × A | 2.21NS | 14.23* | 0.002 | 5.31* | 12.32* | 0.09 NS | ||
茎 Stem | W | 391.94* | 161.40* | 1 364.34* | 21.98* | 0.22 NS | 28.39* | |
A | 154.92* | 139.41* | 323.21* | 0.88NS | 28.31* | 28.56* | ||
W × A | 2.61NS | 0.11NS | 5.49* | 4.27NS | 0.72 NS | 8.76* | ||
叶 Leaf | W | 534.48* | 150.29* | 239.67* | 0.002NS | 71.94* | 45.39* | |
A | 344.69* | 37.92* | 138.98* | 9.29NS | 72.44* | 21.58* | ||
W × A | 24.08* | 3.62NS | 6.28* | 14.14* | 2.73 | 2.51 NS | ||
灌浆期 Filling stage | 根 Root | W | 807.34* | 64.28* | 146.04* | 49.02* | 0.01 NS | 72.57* |
A | 261.64* | 37.47* | 44.13* | 5.61* | 1.76NS | 23.50* | ||
W × A | 26.66* | 1.62NS | 2.17NS | 0.51NS | 2.80 NS | 12.02* | ||
茎 Stem | W | 833.29* | 60.87* | 94.90* | 23.91* | 0.50 NS | 27.93* | |
A | 355.78* | 49.97* | 31.31* | 0.93NS | 7.71* | 14.93* | ||
W × A | 70.14* | 8.21* | 0.92NS | 0.17NS | 10.58* | 14.20* | ||
叶 Leaf | W | 611.60* | 700.33* | 667.78* | 1.09NS | 74.46* | 47.59* | |
A | 227.67* | 95.68* | 46.38* | 17.63* | 18.06* | 39.50* | ||
W × A | 21.66* | 38.60* | 317.30* | 0.82NS | 182.00* | 131.77* |
表1 水分和接种丛枝菌根真菌(AMF)对燕麦各器官碳(C)、氮(N)、磷(P)含量及计量比的主效应和交互作用
Table 1 The main effects and interactions of water and arbuscular mycorrhizal fungi (AMF) inoculation on carbon (C), nitrogen (N), phosphorus (P) contents and its stoichiometric ratio of oat organs
生育时期 Growth stage | 器官 Organ | 处理 Treatment | C | N | P | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 根 Root | W | 529.24* | 85.09* | 85.16* | 57.00* | 2.48 NS | 69.60* |
A | 104.57* | 123.01* | 47.47* | 2.63NS | 30.53* | 4.55 NS | ||
W × A | 2.21NS | 14.23* | 0.002 | 5.31* | 12.32* | 0.09 NS | ||
茎 Stem | W | 391.94* | 161.40* | 1 364.34* | 21.98* | 0.22 NS | 28.39* | |
A | 154.92* | 139.41* | 323.21* | 0.88NS | 28.31* | 28.56* | ||
W × A | 2.61NS | 0.11NS | 5.49* | 4.27NS | 0.72 NS | 8.76* | ||
叶 Leaf | W | 534.48* | 150.29* | 239.67* | 0.002NS | 71.94* | 45.39* | |
A | 344.69* | 37.92* | 138.98* | 9.29NS | 72.44* | 21.58* | ||
W × A | 24.08* | 3.62NS | 6.28* | 14.14* | 2.73 | 2.51 NS | ||
灌浆期 Filling stage | 根 Root | W | 807.34* | 64.28* | 146.04* | 49.02* | 0.01 NS | 72.57* |
A | 261.64* | 37.47* | 44.13* | 5.61* | 1.76NS | 23.50* | ||
W × A | 26.66* | 1.62NS | 2.17NS | 0.51NS | 2.80 NS | 12.02* | ||
茎 Stem | W | 833.29* | 60.87* | 94.90* | 23.91* | 0.50 NS | 27.93* | |
A | 355.78* | 49.97* | 31.31* | 0.93NS | 7.71* | 14.93* | ||
W × A | 70.14* | 8.21* | 0.92NS | 0.17NS | 10.58* | 14.20* | ||
叶 Leaf | W | 611.60* | 700.33* | 667.78* | 1.09NS | 74.46* | 47.59* | |
A | 227.67* | 95.68* | 46.38* | 17.63* | 18.06* | 39.50* | ||
W × A | 21.66* | 38.60* | 317.30* | 0.82NS | 182.00* | 131.77* |
生育时期 Growth stage | 器官 Organ | 处理 Treatment | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 根 Root | 75%NAMF | 93.73 ± 1.67b | 8.44 ± 0.25b | 2.63 ± 0.08b | 11.12 ± 0.47a | 3.20 ± 0.03c | 35.61 ± 1.39a |
75%AMF | 109.10 ± 2.23a | 10.78 ± 0.38a | 2.90 ± 0.09a | 10.13 ± 0.53b | 3.72 ± 0.06a | 37.72 ± 1.96a | ||
55%NAMF | 65.50 ± 2.80d | 7.58 ± 0.29c | 2.29 ± 0.03c | 8.65 ± 0.35c | 3.31 ± 0.17bc | 28.65 ± 1.53b | ||
55%AMF | 76.97 ± 2.25c | 8.73 ± 0.10b | 2.55 ± 0.03b | 8.82 ± 0.35c | 3.43 ± 0.07b | 30.24 ± 0.94b | ||
茎 Stem | 75%NAMF | 87.57 ± 1.88b | 8.48 ± 0.33b | 2.58 ± 0.03b | 10.33 ± 0.18a | 3.29 ± 0.15b | 33.99 ± 0.98a | |
75%AMF | 97.73 ± 1.61a | 9.82 ± 0.09a | 2.80 ± 0.02a | 9.96 ± 0.23ab | 3.51 ± 0.05a | 34.97 ± 0.48a | ||
55%NAMF | 67.47 ± 2.00d | 7.11 ± 0.09c | 2.20 ± 0.01d | 9.49 ± 0.30c | 3.23 ± 0.02b | 30.60 ± 0.88b | ||
55%AMF | 80.67 ± 0.68c | 8.38 ± 0.15b | 2.37 ± 0.02c | 9.63 ± 0.11bc | 3.53 ± 0.06a | 34.00 ± 0.17a | ||
叶 Leaf | 75%NAMF | 79.17 ± 1.18b | 9.52 ± 0.45b | 0.88 ± 0.04b | 8.33 ± 0.50ab | 10.84 ± 0.27b | 90.34 ± 5.80b | |
75%AMF | 88.17 ± 1.58a | 10.75 ± 0.20a | 1.21 ± 0.05a | 8.20 ± 0.25bc | 8.93 ± 0.48c | 73.21 ± 1.73c | ||
55%NAMF | 60.70 ± 0.80d | 7.94 ± 0.19d | 0.58 ± 0.02d | 7.65 ± 0.26c | 13.67 ± 0.61a | 104.53 ± 5.11a | ||
55%AMF | 76.17 ± 0.81c | 8.59 ± 0.02c | 0.79 ± 0.04c | 8.87 ± 0.07a | 10.84 ± 0.51b | 96.12 ± 5.32ab | ||
灌浆期 Filling stage | 根 Root | 75%NAMF | 98.93 ± 2.41b | 10.70 ± 0.39b | 2.88 ± 0.06b | 9.26 ± 0.42a | 3.72 ± 0.18a | 34.40 ± 1.54b |
75%AMF | 123.87 ± 3.00a | 12.52 ± 0.40a | 3.09 ± 0.04a | 9.90 ± 0.42a | 4.05 ± 0.18a | 40.10 ± 1.16a | ||
55%NAMF | 71.77 ± 0.55d | 9.03 ± 0.17c | 2.32 ± 0.11d | 7.94 ± 0.11b | 3.89 ± 0.11a | 30.94 ± 1.24c | ||
55%AMF | 84.63 ± 1.12c | 10.23 ± 0.62b | 2.65 ± 0.05c | 8.29 ± 0.41b | 3.85 ± 0.27a | 31.89 ± 0.63c | ||
茎 Stem | 75%NAMF | 102.93 ± 1.38b | 9.64 ± 0.32b | 2.71 ± 0.03b | 10.68 ± 0.21a | 3.55 ± 0.08c | 37.92 ± 0.12b | |
75%AMF | 127.43 ± 1.68a | 11.65 ± 0.55a | 2.89 ± 0.07a | 10.96 ± 0.57a | 4.03 ± 0.10a | 44.09 ± 1.23a | ||
55%NAMF | 84.50 ± 1.10d | 8.64 ± 0.29c | 2.31 ± 0.09d | 9.79 ± 0.30b | 3.75 ± 0.22ab | 36.70 ± 1.96b | ||
55%AMF | 93.93 ± 1.94c | 9.49 ± 0.04b | 2.56 ± 0.06c | 9.90 ± 0.17b | 3.71 ± 0.10c | 36.77 ± 1.57b | ||
叶 Leaf | 75%NAMF | 99.17 ± 1.10b | 10.33 ± 0.16b | 0.95 ± 0.03b | 9.60 ± 0.26ab | 10.87 ± 0.21b | 104.39 ± 0.50b | |
75%AMF | 114.93 ± 0.96a | 11.47 ± 0.17a | 1.31 ± 0.02a | 10.02 ± 0.18a | 8.76 ± 0.39c | 87.73 ± 2.46c | ||
55%NAMF | 83.13 ± 1.91d | 8.89 ± 0.02c | 0.68 ± 0.03d | 9.35 ± 0.21b | 13.03 ± 0.55a | 121.96 ± 7.66a | ||
55%AMF | 91.47 ± 1.37c | 9.14 ± 0.07b | 0.84 ± 0.03c | 10.00 ± 0.23a | 10.89 ± 0.38c | 108.94 ± 3.24b |
表2 接种丛枝菌根真菌(AMF)对干旱胁迫燕麦各器官碳(C)、氮(N)、磷(P)含量及计量比的影响(平均值±标准差)
Table 2 Effects of arbuscular mycorrhizal fungi (AMF) inoculation on carbon (C), nitrogen (N), phosphorus (P) and stoichiometric ratio of oat organs under drought stress (mean ± SE)
生育时期 Growth stage | 器官 Organ | 处理 Treatment | C (g·kg-1) | N (g·kg-1) | P (g·kg-1) | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 根 Root | 75%NAMF | 93.73 ± 1.67b | 8.44 ± 0.25b | 2.63 ± 0.08b | 11.12 ± 0.47a | 3.20 ± 0.03c | 35.61 ± 1.39a |
75%AMF | 109.10 ± 2.23a | 10.78 ± 0.38a | 2.90 ± 0.09a | 10.13 ± 0.53b | 3.72 ± 0.06a | 37.72 ± 1.96a | ||
55%NAMF | 65.50 ± 2.80d | 7.58 ± 0.29c | 2.29 ± 0.03c | 8.65 ± 0.35c | 3.31 ± 0.17bc | 28.65 ± 1.53b | ||
55%AMF | 76.97 ± 2.25c | 8.73 ± 0.10b | 2.55 ± 0.03b | 8.82 ± 0.35c | 3.43 ± 0.07b | 30.24 ± 0.94b | ||
茎 Stem | 75%NAMF | 87.57 ± 1.88b | 8.48 ± 0.33b | 2.58 ± 0.03b | 10.33 ± 0.18a | 3.29 ± 0.15b | 33.99 ± 0.98a | |
75%AMF | 97.73 ± 1.61a | 9.82 ± 0.09a | 2.80 ± 0.02a | 9.96 ± 0.23ab | 3.51 ± 0.05a | 34.97 ± 0.48a | ||
55%NAMF | 67.47 ± 2.00d | 7.11 ± 0.09c | 2.20 ± 0.01d | 9.49 ± 0.30c | 3.23 ± 0.02b | 30.60 ± 0.88b | ||
55%AMF | 80.67 ± 0.68c | 8.38 ± 0.15b | 2.37 ± 0.02c | 9.63 ± 0.11bc | 3.53 ± 0.06a | 34.00 ± 0.17a | ||
叶 Leaf | 75%NAMF | 79.17 ± 1.18b | 9.52 ± 0.45b | 0.88 ± 0.04b | 8.33 ± 0.50ab | 10.84 ± 0.27b | 90.34 ± 5.80b | |
75%AMF | 88.17 ± 1.58a | 10.75 ± 0.20a | 1.21 ± 0.05a | 8.20 ± 0.25bc | 8.93 ± 0.48c | 73.21 ± 1.73c | ||
55%NAMF | 60.70 ± 0.80d | 7.94 ± 0.19d | 0.58 ± 0.02d | 7.65 ± 0.26c | 13.67 ± 0.61a | 104.53 ± 5.11a | ||
55%AMF | 76.17 ± 0.81c | 8.59 ± 0.02c | 0.79 ± 0.04c | 8.87 ± 0.07a | 10.84 ± 0.51b | 96.12 ± 5.32ab | ||
灌浆期 Filling stage | 根 Root | 75%NAMF | 98.93 ± 2.41b | 10.70 ± 0.39b | 2.88 ± 0.06b | 9.26 ± 0.42a | 3.72 ± 0.18a | 34.40 ± 1.54b |
75%AMF | 123.87 ± 3.00a | 12.52 ± 0.40a | 3.09 ± 0.04a | 9.90 ± 0.42a | 4.05 ± 0.18a | 40.10 ± 1.16a | ||
55%NAMF | 71.77 ± 0.55d | 9.03 ± 0.17c | 2.32 ± 0.11d | 7.94 ± 0.11b | 3.89 ± 0.11a | 30.94 ± 1.24c | ||
55%AMF | 84.63 ± 1.12c | 10.23 ± 0.62b | 2.65 ± 0.05c | 8.29 ± 0.41b | 3.85 ± 0.27a | 31.89 ± 0.63c | ||
茎 Stem | 75%NAMF | 102.93 ± 1.38b | 9.64 ± 0.32b | 2.71 ± 0.03b | 10.68 ± 0.21a | 3.55 ± 0.08c | 37.92 ± 0.12b | |
75%AMF | 127.43 ± 1.68a | 11.65 ± 0.55a | 2.89 ± 0.07a | 10.96 ± 0.57a | 4.03 ± 0.10a | 44.09 ± 1.23a | ||
55%NAMF | 84.50 ± 1.10d | 8.64 ± 0.29c | 2.31 ± 0.09d | 9.79 ± 0.30b | 3.75 ± 0.22ab | 36.70 ± 1.96b | ||
55%AMF | 93.93 ± 1.94c | 9.49 ± 0.04b | 2.56 ± 0.06c | 9.90 ± 0.17b | 3.71 ± 0.10c | 36.77 ± 1.57b | ||
叶 Leaf | 75%NAMF | 99.17 ± 1.10b | 10.33 ± 0.16b | 0.95 ± 0.03b | 9.60 ± 0.26ab | 10.87 ± 0.21b | 104.39 ± 0.50b | |
75%AMF | 114.93 ± 0.96a | 11.47 ± 0.17a | 1.31 ± 0.02a | 10.02 ± 0.18a | 8.76 ± 0.39c | 87.73 ± 2.46c | ||
55%NAMF | 83.13 ± 1.91d | 8.89 ± 0.02c | 0.68 ± 0.03d | 9.35 ± 0.21b | 13.03 ± 0.55a | 121.96 ± 7.66a | ||
55%AMF | 91.47 ± 1.37c | 9.14 ± 0.07b | 0.84 ± 0.03c | 10.00 ± 0.23a | 10.89 ± 0.38c | 108.94 ± 3.24b |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.60 | 0.54 | 0.68 | 0.54 | 0.51 | 0.48 | 0.46 | 0.53 | 0.57 | 0.57 | 0.62 | 0.58 | 0.66 | 0.60 | 0.68 | 0.51 |
表3 丛枝菌根真菌(AMF)侵染率与各指标相关系数(p < 0.05)
Table 3 Correlation coefficient between arbuscular mycorrhizal fungi (AMF) colonization rate and each indicators (p < 0.05)
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.60 | 0.54 | 0.68 | 0.54 | 0.51 | 0.48 | 0.46 | 0.53 | 0.57 | 0.57 | 0.62 | 0.58 | 0.66 | 0.60 | 0.68 | 0.51 |
图4 非结构性碳水化合物(NSC)与碳(C)、氮(N)、磷(P)含量及其计量比相关性。X1-X30分别表示根可溶性糖含量、茎可溶性糖含量、叶可溶性糖含量、根淀粉含量、茎淀粉含量、叶淀粉含量、根NSC含量、茎NSC含量、叶NSC含量、根可溶性糖:淀粉、茎可溶性糖/淀粉、叶可溶性糖:淀粉、根C含量、茎C含量、叶C含量、根N含量、茎N含量、叶N含量、根P含量、茎P含量、叶P含量、根C:N、茎C:N、叶C:N、根N:P、茎N:P、叶N:P、根C:P、茎C:P、叶C:P。
Fig. 4 Correlation between non-structural carbohydrates (NSC) and carbon (C), nitrogen (N), phosphorus (P) contents and its stoichiometric ratio. X1-X30 represented root soluble sugar content, stem soluble sugar content, leaf soluble sugar content, root starch content, stem starch content, leaf starch content, root NSC content, stem NSC content, leaf NSC content, root soluble sugar:starch, stem soluble sugar:starch, leaf soluble sugar:starch, root C content, stem C content, leaf C content, root N content, stem N content, leaf N content, root P content, stem P content, leaf P content, root C:N, stem C:N, leaf C:N, root N:P, stem N:P, leaf N:P, root C:P, stem C:P, leaf C:P, respectively.
图5 水分及接种处理下燕麦各器官非结构性碳水化合物(NSC)含量, 碳(C)、氮(N)、磷(P)含量及其计量比对生长指标及籽粒产量影响的冗余分析。A, 75%供水。B, 55%供水。C, 未接种AMF。D, 接种AMF。X1-X33分别表示株高、根冠比、籽粒产量、根可溶性糖含量、茎可溶性糖含量、叶可溶性糖含量、根淀粉含量、茎淀粉含量、叶淀粉含量、根NSC含量、茎NSC含量、叶NSC含量、根可溶性糖:淀粉、茎可溶性糖:淀粉、叶可溶性糖:淀粉、根C含量、茎C含量、叶C含量、根N含量、茎N含量、叶N含量、根P含量、茎P含量、叶P含量、根C:N、茎C:N、叶C:N、根N:P、茎N:P、叶N:P、根C:P、茎C:P、叶C:P。75%NAMF, 75%土壤相对含水量未接种AMF; 75%AMF, 75%土壤相对含水量接种AMF; 55%NAMF, 55%土壤相对含水量未接种AMF; 55%AMF, 55%土壤相对含水量接种AMF。
Fig. 5 Redundancy analysis of the effects of non-structural carbohydrates (NSC) content, carbon (C), nitrogen (N), phosphorus (P) contents and its stoichiometric ratio on growth indicators and grain yield of oat organs under water and inoculation treatments. A, 75% water supply. B, 55% water supply. C, AMF-free. D, AMF inoculation. X1-X33 represented plant height, root-to-shoot ratio, grain yield, root sucrose content, stem sucrose content, leaf sucrose content, root starch content, stem starch content, leaf starch content, root NSC content, stem NSC content, leaf NSC content, root soluble sugar:starch, stem soluble sugar:starch, leaf soluble sugar:starch, root C content, stem C content, leaf C content, root N content, stem N content, leaf N content, root P content, stem P content, leaf P content, root C:N, stem C:N, leaf C:N, root N:P, stem N:P, leaf N:P, root C:P, stem C:P, leaf C:P, respectively. 75%NAMF, 75% soil relative water content without AMF inoculation; 75%AMF, 75% soil relative water content with AMF inoculation; 55%NAMF, 55% soil relative water content without AMF inoculation; 55%AMF, 55% soil relative water content with AMF inoculation.
[1] |
Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal of Plant Physiology, 169, 704-709.
DOI PMID |
[2] |
Attarzadeh M, Balouchi H, Rajaie M, Dehnavi MM, Salehi A (2019). Improvement of Echinacea purpurea performance by integration of phosphorus with soil microorganisms under different irrigation regimes. Agricultural Water Management, 221, 238-247.
DOI |
[3] | Azizi S, Kouchaksaraei MT, Hadian J, Abad ARFN, Sanavi SAMM, Ammer C, Bader MKF (2021). Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology and Management, 497, 119478. DOI: 10.1016/j.foreco.2021.119478. |
[4] |
Bago B, Pfeffer PE, Shachar-Hill Y (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124, 949-958.
PMID |
[5] | Bao SD (2000). Soil Agrochemical Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[6] | Bitterlich M, Jansa J, Graefe J, Pauwels R, Sudová R, Rydlová J, Püschel D (2024). Drought accentuates the role of mycorrhiza in phosphorus uptake, part II—The intraradical enzymatic response. Soil Biology & Biochemistry, 193, 109414. DOI: 10.1016/j.soilbio.2024.109414. |
[7] | Cai HX, Wu FZ, Yang WQ (2011). Effects of drought stress on the photosynthesis of Salix paraqplesia and Hippophae rhamnoides seedlings. Acta Ecologica Sinica, 31, 2430-2436. |
[蔡海霞, 吴福忠, 杨万勤 (2011). 干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响. 生态学报, 31, 2430-2436.] | |
[8] |
Chen BD, Wang ET (2025). Research prospects on ecology, physiology and application technology of arbuscular mycorrhizal fungi. Bulletin of Botanical Research, 45, 329-332.
DOI |
[陈保冬, 王二涛 (2025). 丛枝菌根生态生理与应用技术研究展望. 植物研究, 45, 329-332.]
DOI |
|
[9] | Cheng HQ, Zou YN, Wu QS, Kuča K (2021). Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Frontiers in Plant Science, 12, 659694. DOI: 10.3389/fpls.2021.659694. |
[10] |
Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant physiology, 171, 1009-1023.
DOI PMID |
[11] | Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity, 12, 370. DOI: 10.3390/d12100370. |
[12] |
Ditmarová L, Kurjak D, Palmroth S, Kmeť J, Střelcová K (2010). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30, 205-213.
DOI PMID |
[13] | Doubková P, Vlasáková E, Sudová R (2013). Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant and Soil, 370, 149-161. |
[14] | Du JH, Shao JY, Li SF, Qin J (2020). Non-structural carbohydrate content of trees and its influencing factors at multiple spatial-temporal scales: a review. Chinese Journal of Applied Ecology, 31, 1378-1388. |
[杜建会, 邵佳怡, 李升发, 秦晶 (2020). 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 31, 1378-1388.]
DOI |
|
[15] | Duan HX, Luo CL, Zhu Y, Zhao L, Wang J, Wang W, Xiong YC (2024). Arbuscular mycorrhizal fungus activates wheat physiology for higher reproductive allocation under drought stress in primitive and modern wheat. European Journal of Agronomy, 161, 127376. DOI: 10.1016/j.eja.2024.127376. |
[16] | Genre A, Lanfranco L, Perotto S, Bonfante P (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18, 649-660. |
[17] |
Gupta A, Rico-Medina A, Caño-Delgado AI (2020). The physiology of plant responses to drought. Science, 368, 266-269.
DOI PMID |
[18] | Jiang WT, Gong L, Yang LH, He SP, Liu XH (2021). Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China. Scientific Reports, 11, 19631. DOI: 10.1038/s41598-021-99075-5. |
[19] | Li XX, Li JZ (2013). Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Storage and Process, 13(4), 24-27. |
[20] | Li YL, Jin ZX, Luo GY, Chen C, Sun ZS, Wang XY (2022). Effects of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrate contents and C:N:P stoichiometry of Heptacodium miconioides under drought stress. Chinese Journal of Applied Ecology, 33, 963-971. |
[李月灵, 金则新, 罗光宇, 陈超, 孙中帅, 王晓燕 (2022). 干旱胁迫下接种丛枝菌根真菌对七子花非结构性碳水化合物积累及C、N、P化学计量特征的影响. 应用生态学报, 33, 963-971.]
DOI |
|
[21] | Li Z, Tan XF, Lu K, Zhang L, Long HX, Lü JB, Lin Q (2017). Influence of drought stress on the growth, leaf gas exchange, and chlorophyll fluorescence in two varieties of tung tree seedlings. Acta Ecologica Sinica, 37, 1515-1524. |
[李泽, 谭晓风, 卢锟, 张琳, 龙洪旭, 吕佳斌, 林青 (2017). 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响. 生态学报, 37, 1515-1524.] | |
[22] | Liu KL, Han TF, Hu HW, Huang QH, Yu XC, Li DM, Ye HC, Hu ZH (2018). Response of soil enzyme activity in flowering stages of maize to long-term fertilization in red soil. Journal of Plant Nutrition and Fertilizers, 24, 1610-1618. |
[柳开楼, 韩天富, 胡惠文, 黄庆海, 余喜初, 李大明, 叶会财, 胡志华 (2018). 红壤旱地玉米开花期土壤酶活性对长期施肥的响应. 植物营养与肥料学报, 24, 1610-1618.] | |
[23] |
Liu N, Zhao ZY, Jiang XL, Xing XK (2021). Review and prospect of researches on the mechanisms of mycorrhizal fungi in improving plant drought resistance. Mycosystema, 40, 851-872.
DOI |
[刘娜, 赵泽宇, 姜喜铃, 邢晓科 (2021). 菌根真菌提高植物抗旱性机制的研究回顾与展望. 菌物学报, 40, 851-872.]
DOI |
|
[24] |
Liu YX, Lu JH, Cui L, Tang ZH, Ci DW, Zou XX, Zhang XJ, Yu XN, Wang YF, Si T (2023). The multifaceted roles of arbuscular mycorrhizal fungi in peanut responses to salt, drought, and cold stress. BMC Plant Biology, 23, 36. DOI: 10.1186/s12870-023-04053-w.
PMID |
[25] |
Luginbuehl LH, Menard GN, Kurup S, van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GE, Eastmond PJ (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 1175-1178.
DOI PMID |
[26] | Ma Y, Su BL, Han YG, Wu XH, Zhou WM, Wang QW, Zhou L, Yu DP (2021). Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress. Chinese Journal of Applied Ecology, 32, 513-520. |
[马玥, 苏宝玲, 韩艳刚, 吴星慧, 周旺明, 王庆伟, 周莉, 于大炮 (2021). 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 32, 513-520.]
DOI |
|
[27] |
Mathur S, Tomar RS, Jajoo A (2019). Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research, 139, 227-238.
DOI PMID |
[28] | Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniya M (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32. |
[29] |
Millard P, Sommerkorn M, Grelet GA (2007). Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28.
DOI PMID |
[30] | Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642. |
[31] | O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4, 710-714. |
[32] | Pu ZT, Zhang L, Zhang C, Wang H, Wang XX (2022). Research progress of arbuscular mycorrhizal fungi and plant symbiosis affecting plant water regime. Soils, 54, 882-889. |
[蒲子天, 张林, 张弛, 王红, 王鑫鑫 (2022). 丛枝菌根真菌与植物共生影响植物水分状态的研究进展. 土壤, 54, 882-889.] | |
[33] | Püschel D, Bitterlich M, Rydlová J, Bukovská P, Sudová R, Jansa J (2023). Benefits in plant N uptake via the mycorrhizal pathway in ample soil moisture persist under severe drought. Soil Biology & Biochemistry, 187, 109220. DOI: 10.1016/j.soilbio.2023.109220. |
[34] | Püschel D, Bitterlich M, Rydlová J, Jansa J (2021). Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biology & Biochemistry, 157, 108243. DOI: 10.1016/j.soilbio.2021.108243. |
[35] | Rahimzadeh S, Pirzad A (2017). Microorganisms (AMF and PSB) interaction on linseed productivity under water-deficit condition. International Journal of Plant Production, 11, 259-274. |
[36] | Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010). Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology & Biochemistry, 42, 1189-1191. |
[37] | Shi JC, Wang XL, Wang ET (2023). Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annual Review of Plant Biology, 74, 569-607. |
[38] | Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, 107, 245-253. |
[39] | Sun XM, He MZ, Yang RZ, Li JX, Chen NL (2021). Correlation of non-structural carbohydrates with C:N:P stoichiometry among the organs of Nitraria tangutorum. Acta Ecologica Sinica, 41, 1081-1091. |
[孙小妹, 何明珠, 杨睿哲, 李金霞, 陈年来 (2021). 白刺器官间非结构性碳水化合与C:N:P计量比的关联性. 生态学报, 41, 1081-1091.] | |
[40] | Tereucán G, Ruiz A, Nahuelcura J, Oyarzún P, Santander C, Winterhalter P, Ademar Avelar Ferreira P, Cornejo P (2022). Shifts in biochemical and physiological responses by the inoculation of arbuscular mycorrhizal fungi in Triticum aestivum growing under drought conditions. Journal of the Science of Food and Agriculture, 102, 1927-1938. |
[41] | Thioub M, Ewusi-Mensah N, Sarkodie-Addo J, Adjei-Gyapong T (2019). Arbuscular mycorrhizal fungi inoculation enhances phosphorus use efficiency and soybean productivity on a haplic acrisol. Soil and Tillage Research, 192, 174-186. |
[42] |
Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998). Ink and vinegar, a simple staining technique for arbuscular- mycorrhizal fungi. Applied and Environmental Microbiology, 64, 5004-5007.
DOI PMID |
[43] | Wang GW, Jin ZX, George TS, Feng G, Zhang L (2023a). Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytologist, 238, 2578-2593. |
[44] | Wang J, Tang Z (2014). The regulation of soluble sugars in the growth and development of plants. Botanical Research, 3, 71-76. |
[45] | Wang K, Shen C, Sun B, Wang XN, Wei D, Lv LY (2018). Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China. Chinese Journal of Applied Ecology, 29, 2286-2294. |
[王凯, 沈潮, 孙冰, 王潇楠, 魏东, 吕林有 (2018). 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 29, 2286-2294.]
DOI |
|
[46] | Wang Q, Liu MM, Wang ZF, Li JR, Liu K, Huang D (2024). The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Frontiers in Microbiology, 14, 1323881. DOI: 10.3389/fmicb.2023.1323881. |
[47] | Wang Y, Han XY, Ai W, Zhan H, Ma SJ, Lu XJ (2023b). Non-structural carbohydrates and growth adaptation strategies of Quercus mongolica Fisch. ex Ledeb. seedlings under drought stress. Forests, 14, 404. DOI: 10.3390/f14020404. |
[48] | Wang YN, Lin JX, Yang F, Tao S, Yan XF, Zhou ZQ, Zhang YH (2022). Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses. PeerJ, 10, e12890. |
[49] | Wang Y, Zou YN, Shu B, Wu QS (2023c). Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Scientia Horticulturae, 308, 111591. DOI: 10.3390/ijms20174199. |
[50] | Wu QS, Xia RX, Zou YN (2008). Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44, 122-128. |
[51] | Wu YJ, Chen CJ, Wang GA (2024). Inoculation with arbuscular mycorrhizal fungi improves plant biomass and nitrogen and phosphorus nutrients: a meta-analysis. BMC Plant Biology, 24, 960. DOI: 10.1186/s12870-024-05638-9. |
[52] |
Xie H, Zhang QF, Chen TT, Zeng QX, Zhou JC, Wu Y, Lin HY, Liu YY, Yin YF, Chen YM (2022). Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition. Chinese Journal of Plant Ecology, 46, 811-822.
DOI |
[谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民 (2022). 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性. 植物生态学报, 46, 811-822.]
DOI |
|
[53] | Zhang B, Lv YF, Li Y, Li L, Jia JQ, Feng MC, Wang C, Song XY, Yang WD, Shafiq F, Zhang MJ (2023). Inoculation with Rhizophagus intraradices confers drought stress tolerance in oat by improving nitrogen and phosphorus nutrition. Journal of Soil Science and Plant Nutrition, 23, 2039-2052. |
[54] | Zhang ZF, Zhang JC, Huang YQ, Xu GP, Zhang DN, Yu YC (2016). Effects of mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings. Acta Ecologica Sinica, 36, 3402-3410. |
[张中峰, 张金池, 黄玉清, 徐广平, 张德楠, 俞元春 (2016). 接种菌根真菌对青冈栎幼苗耐旱性的影响. 生态学报, 36, 3402-3410.] | |
[55] | Zhao RX, Guo W, Bi N, Guo JY, Wang LX, Zhao J, Zhang J (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Applied Soil Ecology, 88, 41-49. |
[56] | Zhu SG, Duan HX, Tao HY, Zhu L, Zhou R, Yang YM, Zhang XL, Wang WY, Zhu H, Zhang W (2023). Arbuscular mycorrhiza changes plant facilitation patterns and increases resource use efficiency in intercropped annual plants. Applied Soil Ecology, 191, 105030. DOI: 10.1016/j.apsoil.2023.105030. |
[57] | Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012). Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment, 58, 186-191. |
[1] | 杨密, 鲁梦珍, 冯志洋, 袁旭东, 赵小祥, 田秋香, 刘峰. 亚热带森林土壤磷有效性与外生菌根优势度的关联分析[J]. , 2026, 50(菌根生态学): 0-. |
[2] | 李文竹, 栾军伟, 邸雅平, 王一, 陈志成, 聂秀青, 刘世荣. 模拟干旱对菌根介导下暖温带锐齿栎林土壤酶活性和土壤有机碳组分的影响[J]. , 2026, 50(菌根生态学): 0-. |
[3] | 张诚航, 卫星, 吴纯泽, 王裕尧, 李浩楠. 大气还原态氮干湿沉降下水曲柳和兴安落叶松菌根化苗木生长响应[J]. 植物生态学报, 2026, 50(菌根生态学): 0-. |
[4] | 卞嘉琛, 王睿, 高阳阳, 梁雯君, 晋红, 张文轩, 张晓荣, 郝杰, 王常慧, 董宽虎, 刁华杰. 不同水平氮添加对晋北赖草草地地上和地 下净初级生产力的影响[J]. 植物生态学报, 2025, 49(预发表): 1-. |
[5] | 张建华, 周晓阳, 段珊珊, 白佳妮, 徐龙超. 北京东灵山2种典型灌丛碳密度分配特征研究[J]. 植物生态学报, 2025, 49(预发表): 1-. |
[6] | 陈诚智, 高钰森, 罗力嘉, 王东. 川西高寒窄叶鲜卑花灌丛凋落枝和凋落叶生产与分解研究[J]. 植物生态学报, 2025, 49(预发表): 0-. |
[7] | 王睿, 贾会丽, 常玉良, 林茂, 栗国梁, 武帅楷, 苏原, 董宽虎, 王常慧. 不同水平氮添加下晋北赖草叶片化学计量特征及其对光合的影响[J]. , 2025, 49(化学计量与功能性状): 0-. |
[8] | 沈会涛, 俞筱押, 秦彦杰, 武爱彬. 太行山东麓核桃林碳氮磷化学计量及碳储量随林龄变化特征[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 1-. |
[9] | 梁天豪, 熊德成, 刘源豪, 杜旭龙, 杨智杰, 黄锦学. 不同菌根类型树种的根系分泌物特征及其根际效应研究进展[J]. 植物生态学报, 2025, 49(7): 1038-1052. |
[10] | 范亚冉, 夏少攀, 于冰冰, 朱紫琪, 杨威, 范豫川, 刘晓雨, 张旭辉, 郑聚锋. 大气CO2浓度升高和增温对土壤有机碳库积累、分子组成和结构稳定性的影响[J]. 植物生态学报, 2025, 49(7): 1053-1069. |
[11] | 马腾飞, 郝杰, 刁华杰, 宁亚楠, $\boxed{\hbox{王常慧}}$, 董宽虎. 晋北农牧交错带草地土壤无机氮含量的季节变化及其对放牧强度的响应[J]. 植物生态学报, 2025, 49(6): 965-974. |
[12] | 郝杰, 刁华杰, 苏原, 武帅楷, 高阳阳, 梁雯君, 牛慧敏, 杨倩雯, 常婕, 王袼, 许雯丽, 马腾飞, 董宽虎, $\boxed{\hbox{王常慧}}$. 降水调控农牧交错带盐渍化草地净初级生产力对氮添加及刈割的响应[J]. 植物生态学报, 2025, 49(5): 710-719. |
[13] | 韩菲, 王袼, 武帅楷, 林茂, 董宽虎, $\boxed{\hbox{王常慧}}$, 苏原. 极端降水对不同草原土壤总硝化及总氮矿化速率及其敏感性的影响[J]. 植物生态学报, 2025, 49(5): 697-709. |
[14] | 唐远翔, 熊仕臣, 朱洪锋, 张新生, 游成铭, 刘思凝, 谭波, 徐振锋. 长期氮添加对四川盆地西缘常绿阔叶林优势树种凋落叶产量及碳氮磷归还的影响[J]. 植物生态学报, 2025, 49(5): 720-731. |
[15] | 朱润铖, 蔡锡安, 黄娟. 植物防御相关挥发性有机物排放及对氮沉降的响应[J]. 植物生态学报, 2025, 49(5): 681-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19