植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1070-1081.DOI: 10.17521/cjpe.2024.0100 cstr: 32100.14.cjpe.2024.0100
王尧1,2(), 王耀彬1,2, 陈子彦1,2, 伊如汉3, 白永飞2, 赵玉金2,*(
), 金晶炜1,*(
)
收稿日期:
2024-04-07
接受日期:
2024-05-27
出版日期:
2025-07-20
发布日期:
2024-10-11
通讯作者:
*赵玉金, E-mail: zhaoyj@ibcas.ac.cn;作者简介:
ORCID:王尧: 0009-0003-3362-3327
基金资助:
WANG Yao1,2(), WANG Yao-Bin1,2, CHEN Zi-Yan1,2, YI Ru-Han3, BAI Yong-Fei2, ZHAO Yu-Jin2,*(
), JIN Jing-Wei1,*(
)
Received:
2024-04-07
Accepted:
2024-05-27
Online:
2025-07-20
Published:
2024-10-11
Supported by:
摘要: 蒙古高原草原生态系统是欧亚草原的核心组成部分, 是中国北方的重要生态安全屏障。长期以来, 气候变化导致蒙古高原干旱事件发生的强度、频度和持续时间显著增加, 对草原生态系统初级生产力和稳定性产生了重要影响。目前, 很少有研究探索蒙古高原不同草原类型的恢复力和抵抗力对连续干旱的响应。该研究基于2000-2020年标准化降水蒸散指数(SPEI)和净初级生产力(NPP)长时间序列数据, 量化了蒙古高原草原生态系统在连续干旱(1-4年)下的抵抗力和恢复力及其时空变化, 比较了草甸草原、典型草原和荒漠草原的抵抗力和恢复力对极端干旱和中度干旱响应的差异。结果表明: (1)除连续2年干旱外, 中度干旱下草地的抵抗力普遍高于极端干旱, 但草原对极端干旱的恢复能力更强。(2)随着连续干旱年份增加, 极端干旱和中度干旱下草地抵抗力都表现出下降趋势; 但随着连续干旱年份增加, 极端干旱下草地恢复力逐渐增强, 而在中度干旱下草地恢复力却有减小的趋势。(3)沿降水量递减的空间梯度, 草甸草原的抵抗力最高, 典型草原次之, 荒漠草原的抵抗力最低; 相反,荒漠草原的恢复力最高, 草甸草原的恢复力最低。(4)沿时间尺度, 2011-2020年草原抵抗力高于2001-2010年, 恢复力则与之相反; 随着连续干旱年份的增加, 3种草原类型在2000-2010和2011-2020年抵抗力均有下降趋势, 但草原恢复力呈先增加(2000-2010年)后降低(2011-2020年)的趋势。该研究对于深入理解气候变化对蒙古高原草原生态系统结构、功能和服务的影响机制, 促进区域生态安全和可持续发展具有重要意义。
王尧, 王耀彬, 陈子彦, 伊如汉, 白永飞, 赵玉金, 金晶炜. 连续干旱对蒙古高原草地恢复力和抵抗力的影响. 植物生态学报, 2025, 49(7): 1070-1081. DOI: 10.17521/cjpe.2024.0100
WANG Yao, WANG Yao-Bin, CHEN Zi-Yan, YI Ru-Han, BAI Yong-Fei, ZHAO Yu-Jin, JIN Jing-Wei. Effect of consecutive drought on the resilience and resistance of the grasslands on the Mongolian Plateau. Chinese Journal of Plant Ecology, 2025, 49(7): 1070-1081. DOI: 10.17521/cjpe.2024.0100
图1 蒙古高原草地净初级生产力(NPP) (A)、年降水量(MAP) (B)、干旱等级(C)、草地类型(D)分布图, 以及NPP和标准化降水蒸散指数(SPEI)随时间变化图(E). E中红色横线表示干旱等级为极端干旱(SPEI ≤ -1.28)和中度干旱(-1.28 ≤ SPEI ≤ -0.67)。
Fig. 1 Distribution map of Mongolian Plateau Grasslands net primary production (NPP) (A), mean annual precipitation (MAP) (B), drought severity levels (C), grassland types (D), and change of NPP and standardized precipitation evapotranspiration index (SPEI) over the years (E). The red horizontal lines in E indicate drought severity levels: SPEI ≤ -1.28 represents extreme drought, while -1.28 ≤ SPEI ≤ -0.67 represents moderate drought.
SPEI | 严重程度 Severity level |
---|---|
-1.28 > SPEI | 极端干旱 Extreme drought |
-0.67 ≥ SPEI ≥ -1.28 | 中度干旱 Moderate drought |
0.67 > SPEI > -0.67 | 正常 Normal |
表1 标准化降水蒸散指数(SPEI)干旱等级分类表
Table 1 Dry severity level classified by standardized precipitation evapotranspiration index (SPEI) value
SPEI | 严重程度 Severity level |
---|---|
-1.28 > SPEI | 极端干旱 Extreme drought |
-0.67 ≥ SPEI ≥ -1.28 | 中度干旱 Moderate drought |
0.67 > SPEI > -0.67 | 正常 Normal |
图2 蒙古高原草地抵抗力(A)和恢复力(B)空间分布格局, 抵抗力(C)和恢复力(D)沿年降水量梯度变化, 以及不同草地类型抵抗力和恢复力(E)。实线是最佳拟合线(p < 0.05), 阴影区域表示95%的置信区间。*, p < 0.05; ***, p < 0.001。
Fig. 2 Spatial distribution patterns of resistance (A) and resilience (B) in Mongolian Plateau Grasslands, variation of resistance (C) and resilience (D) along the mean annual precipitation (MAP) gradient, resistance and resilience of different grassland types (E). The solid lines are the best fitted lines (p < 0.05), and the shaded area represents the 95% confidence space. *, p < 0.05; ***, p < 0.001.
图3 连续干旱下蒙古高原整个区域、草甸草原、典型草原和荒漠草原不同干旱强度的抵抗力和恢复力(平均值±标准误)。*表示差异显著(p < 0.05), **表示差异非常显著(p < 0.01), ***表示差异极显著(p < 0.001), ns表示差异不显著(p ≥ 0.05)。
Fig. 3 Change of the resistance and resilience to different drought intensities across the entire region of the Mongolian Plateau, as well as meadow steppe, typical steppe and desert steppe under continuous drought (mean ± SE). * indicates a significant difference (p < 0.05), ** indicates a very significant difference (p < 0.01), *** indicates a highly significant difference (p < 0.001), and ns indicates no significant difference (p ≥ 0.05).
图4 蒙古高原草地2000-2010 (A、B)、2011-2020年(C、D)的抵抗力和恢复力及其变化(E、F)。A、C、E代表抵抗力; B、D、F代表恢复力。
Fig. 4 Resistance and resilience, as well as their changes (E, F), of the grasslands in the Mongolian Plateau during 2000-2010 (A, B) and 2011-2020 (C, D). A, C, E indicate resistance; B, D, F indicate resilience.
图5 连续干旱下蒙古高原整个区域、草甸草原、典型草原和荒漠草原不同时期的抵抗力和恢复力(平均值±标准误)。*表示差异显著(p < 0.05), **表示差异非常显著(p < 0.01), ***表示差异极显著(p < 0.001), ns表示差异不显著(p ≥ 0.05)。
Fig. 5 Change of the resistance and resilience to different time periods across the entire region of the Mongolian Plateau, as well as meadow steppe, typical steppe, and desert steppe under continuous drought (mean ± SE). * indicates a significant difference (p < 0.05), ** indicates a very significant difference (p < 0.01), *** indicates a highly significant difference (p < 0.001), and ns indicates no significant difference (p ≥ 0.05).
[1] | Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184. |
[2] |
Carroll CJW, Slette IJ, Griffin-Nolan RJ, Baur LE, Hoffman AM, Denton EM, Gray JE, Post AK, Johnston MK, Yu Q, Collins SL, Luo YQ, Smith MD, Knapp AK (2021). Is a drought a drought in grasslands? Productivity responses to different types of drought. Oecologia, 197, 1017-1026.
DOI PMID |
[3] | Chen XN, Tao X, Yang YP (2022). Distribution and attribution of gross primary productivity increase over the Mongolian Plateau, 2001-2018. IEEE Access, 10, 25125-25134. |
[4] | Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N, Byun C, Catford JA, Cerabolini BEL, Cornelissen JHC, Craine JM, et al. (2018). Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology & Evolution, 2, 1579-1587. |
[5] | de Keersmaecker W, Lhermitte S, Tits L, Honnay O, Somers B, Coppin P (2015). A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 24, 539-548. |
[6] | Forzieri G, Dakos V, McDowell NG, Ramdane A, Cescatti A (2022). Emerging signals of declining forest resilience under climate change. Nature, 608, 534-539. |
[7] | Gao G, Li Y, Chen YX, Feng AQ (2023). The evolution characteristics of drought spatio-temporal law in China in the recent 30 years. China Flood & Drought Management, 33(7), 1-8. |
[高歌, 李莹, 陈逸骁, 冯爱青 (2023). 30年来中国干旱时空规律演变特征. 中国防汛抗旱, 33(7), 1-8.] | |
[8] | Gu Y, Dong K, Geisen S, Yang W, Yan Y, Gu D, Liu N, Borisjuk N, Luo Y, Friman VP (2020). The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant and Soil, 452, 105-117. DOI: 10.1007/s11104-020-04545-w. |
[9] | Guo J, Yang X, Jiang W, Xing X, Zhang M, Chen A, Yang D, Yang M, Wei L, Xu B (2023). Resistance of grassland under different drought types in the Inner Mongolia Autonomous Region of China. Remote Sensing, 15, 5045. DOI: 10.3390/rs15205045. |
[10] | Hoover DL, Knapp AK, Smith MD (2014). Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 95, 2646-2656. |
[11] | Hossain ML, Li J, Hoffmann S, Beierkuhnlein C (2022). Biodiversity showed positive effects on resistance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. Science of the Total Environment, 827, 154322. DOI: 10.1016/j.scitotenv.2022.154322. |
[12] | Hossain ML, Li J, Lai Y, Beierkuhnlein C (2023). Long-term evidence of differential resistance and resilience of grassland ecosystems to extreme climate events. Environmental Monitoring and Assessment, 195, 734. DOI: 10.1007/s10661-023-11269-8. |
[13] | Huang WJ, Wang W, Cao M, Fu G, Xia JY, Wang ZX, Li JS (2021). Local climate and biodiversity affect the stability of China’s grasslands in response to drought. Science of the Total Environment, 768, 145482. DOI: 10.1016/j.scitotenv.2021.145482. |
[14] | Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo QF, Hautier Y, Hector A, et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577. |
[15] | Ivits E, Horion S, Erhard M, Fensholt R (2016). Assessing European ecosystem stability to drought in the vegetation growing season. Global Ecology and Biogeography, 25, 1131-1143. |
[16] | Komatsu KJ, Avolio ML, Lemoine NP, Isbell F, Grman E, Houseman GR, Koerner SE, Johnson DS, Wilcox KR, Alatalo JM, Anderson JP, Aerts R, Baer SG, Baldwin AH, Bates J, et al. (2019). Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 116, 17867-17873. |
[17] | Kong DD, Zhang Q, Gu XH, Wang Y, Li HZ (2016). Vegetation responses to drought at different time scales in China. Acta Ecologica Sinica, 36, 7908-7918. |
[孔冬冬, 张强, 顾西辉, 王月, 李华贞 (2016). 植被对不同时间尺度干旱事件的响应特征及成因分析. 生态学报, 36, 7908-7918.] | |
[18] | Lei T, Feng J, Lv J, Wang J, Song H, Song W, Gao X (2020). Net Primary Productivity Loss under different drought levels in different grassland ecosystems. Journal of Environmental Management, 274, 111144. DOI: 10.1016/j.jenvman.2020.111144. |
[19] | Li X, Piao S, Wang K, Wang X, Wang T, Ciais P, Chen A, Lian X, Peng S, Peñuelas J (2020). Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology & Evolution, 4, 1075-1083. |
[20] | Li ZY, Ye XZ, Wang SP (2021). Ecosystem stability and its relationship with biodiversity. Chinese Journal of Plant Ecology, 45, 1127-1139. |
[李周园, 叶小洲, 王少鹏 (2021). 生态系统稳定性及其与生物多样性的关系. 植物生态学报, 45, 1127-1139.]
DOI |
|
[21] | Liu L, Guan JY, Zheng JH, Wang YD, Han WQ, Liu YJ (2023). Cumulative effects of drought have an impact on net primary productivity stability in Central Asian grasslands. Journal of Environmental Management, 344, 118734. DOI: 10.1016/j.jenvman.2023.118734. |
[22] | Luo W, Ma W, Song L, Te N, Chen J, Muraina TO, Wilkins K, Griffin-Nolan RJ, Ma T, Qian J, Xu C, Yu Q, Wang Z, Han X, Collins SL (2023). Compensatory dynamics drive grassland recovery from drought. Journal of Ecology, 111, 1281-1291. |
[23] | Luo W, Zuo X, Griffin-Nolan RJ, Xu C, Ma W, Song L, Helsen K, Lin Y, Cai J, Yu Q, Wang Z, Smith MD, Han X, Knapp AK (2019). Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 442, 343-353. |
[24] | Miao LJ, Jiang C, He B, Liu Q, Zhu F, Cui XF (2014). Response of vegetation coverage to climate change in Mongolian Plateau during recent 10 years. Acta Ecologica Sinica, 34, 1295-1301. |
[缪丽娟, 蒋冲, 何斌, 刘强, 朱枫, 崔雪锋 (2014). 近10年来蒙古高原植被覆盖变化对气候的响应. 生态学报, 34, 1295-1301.] | |
[25] | Schwalm CR, Anderegg WRL, Michalak AM, Fisher JB, Biondi F, Koch G, Litvak M, Ogle K, Shaw JD, Wolf A, Huntzinger DN, Schaefer K, Cook R, Wei Y, Fang Y, et al. (2017). Global patterns of drought recovery. Nature, 548, 202-205. |
[26] | Shi H, Tian H, Lange S, Yang J, Pan S, Fu B, Reyer CPO (2021). Terrestrial biodiversity threatened by increasing global aridity velocity under high-level warming. Proceedings of the National Academy of Sciences of the United States of America, 118, e2015552118. DOI: 10.1073/pnas.2015552118. |
[27] | Smith MD (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663. |
[28] |
Song L, Luo WT, Ma W, He P, Liang XS, Wang ZW (2020). Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 44, 669-676.
DOI |
[宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文 (2020). 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 44, 669-676.]
DOI |
|
[29] | Stuart-Haëntjens E, de Boeck HJ, Lemoine NP, Mänd P, Kröel-Dulay G, Schmidt IK, Jentsch A, Stampfli A, Anderegg WRL, Bahn M, Kreyling J, Wohlgemuth T, Lloret F, Classen AT, Gough CM, Smith MD (2018). Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Science of the Total Environment, 636, 360-366. |
[30] |
Tong S, Zhang J, Bao Y, Lai Q, Lian X, Li N, Bao Y (2018). Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982-2013. Journal of Geographical Sciences, 28, 595-610.
DOI |
[31] |
Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 52-57.
DOI PMID |
[32] | Wang B (2023). Characteristics of Plant Communities and Soil Organic Carbon Mineralization in Desert Steppe of Western Inner Mongolia. Master degree dissertation, Shanxi University, Taiyuan. |
[王犇 (2023). 内蒙古西部荒漠草原植物群落特征与土壤有机碳矿化研究. 硕士学位论文, 山西大学, 太原.] | |
[33] |
Wei YX, Chen LJ, Feng Q, Xi HY, Guo R, Zhang CQ (2024). Progress on microbial characteristics in arid salt-affected soils and related factors. Journal of Desert Research, 44(3), 18-30.
DOI |
[卫雨西, 陈丽娟, 冯起, 席海洋, 郭瑞, 张成琦 (2024). 干旱区盐碱土微生物特征及其影响因素研究进展. 中国沙漠, 44(3), 18-30.]
DOI |
|
[34] | Xu C, Ke Y, Zhou W, Luo W, Ma W, Song L, Smith MD, Hoover DL, Wilcox KR, Fu W (2021). Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecological Indicators, 131, 108139. DOI: 10.1016/j.ecolind.2021.108139. |
[35] | Xu YQ (2020). Study on the Remote Sensing-based Measurement Model of Vegetation Resilience. PhD dissertation, China University of Mining and Technology, Xuzhou, Jiangsu. |
[徐雅晴 (2020). 植被恢复力遥感测度模型研究. 博士学位论文, 中国矿业大学, 江苏徐州.] | |
[36] |
Zhang B, Zhu JJ, Liu HM, Pan QM (2014). Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 38, 1008-1018.
DOI |
[张彬, 朱建军, 刘华民, 潘庆民 (2014). 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 38, 1008-1018.]
DOI |
|
[37] |
Zhang P, Jeong JH, Yoon JH, Kim H, Wang SYS, Linderholm HW, Fang K, Wu X, Chen D (2020). Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 370, 1095-1099.
DOI PMID |
[38] |
Zhao SY, Gon ZN, Liu XY (2015). Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001-2013. Acta Geographica Sinica, 70, 717-729.
DOI |
[赵舒怡, 宫兆宁, 刘旭颖 (2015). 2001-2013年华北地区植被覆盖度与干旱条件的相关分析. 地理学报, 70, 717-729.]
DOI |
|
[39] | Zhou Y, Ma HB, Lu Q, Ma JL, Shen Y, Wang GH (2024). Different responses of leaf and root economics spectrum to grazing time at the community level in desert steppe, China. Science of the Total Environment, 909, 168547. DOI: 10.1016/j.scitotenv.2023.168547. |
[1] | 李文竹, 栾军伟, 邸雅平, 王一, 陈志成, 聂秀青, 刘世荣. 模拟干旱对菌根介导下暖温带锐齿栎林土壤酶活性和土壤有机碳组分的影响[J]. , 2026, 50(菌根生态学): 0-. |
[2] | 张琳, 陈华阳, 黄振英. 2004-2010年鄂尔多斯沙地草地长期监测样地植物物种组成和群落特征数据集[J]. 植物生态学报, 2025, 49(8): 1-. |
[3] | 张斌, 张浩成, 乔天, 吕治兵, 许亚男, 李雪芹, 原向阳, 冯美臣, 张美俊. 接种丛枝菌根真菌对干旱胁迫燕麦非结构性碳水化合物及碳氮磷化学计量特征的影响[J]. 植物生态学报, 2025, 49(7): 1082-1095. |
[4] | 王秀媛, 申磊, 刘婷婷, 尉雯雯, 张帅, 张伟. ‘塞外红’苹果-大豆复合系统根系时空分布与种间竞争策略[J]. 植物生态学报, 2025, 49(5): 748-759. |
[5] | 马富龙, 王雨晴, 郝瑜, 段继超, 刘霏霏, 席琳乔, 韩路. 海拔梯度对昆仑山北坡中部草原植物与土壤微生物群落结构与多样性的影响[J]. 植物生态学报, 2025, 49(5): 732-747. |
[6] | 刘柯言, 韩璐, 宋午椰, 张初蕊, 胡旭, 许行, 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J]. 植物生态学报, 2025, 49(3): 415-431. |
[7] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
[8] | 邵畅畅, 段洪浪, 赵熙州, 丁贵杰. 树木干旱死亡点预测及致死生理机制研究进展[J]. 植物生态学报, 2025, 49(2): 221-231. |
[9] | 王堃莹, 邱贵福, 刘子赫, 孟君, 刘宇轩, 贾国栋. 气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节[J]. 植物生态学报, 2025, 49(2): 343-355. |
[10] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[11] | 吴风燕, 吴永胜, 陈晓涵, 冯骥, 卢丽媛, 查斯娜, 王超宇, 孟元发, 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率的时空变化特征[J]. 植物生态学报, 2024, 48(9): 1180-1191. |
[12] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[13] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[14] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[15] | 陈科宇, 邢森, 唐玉, 孙佳慧, 任世杰, 张静, 纪宝明. 不同草地类型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19