植物生态学报 ›› 2011, Vol. 35 ›› Issue (6): 587-595.DOI: 10.3724/SP.J.1258.2011.00587
所属专题: 生态化学计量
• 研究论文 • 下一篇
王晶苑1,*(), 王绍强1, 李纫兰2, 闫俊华3, 沙丽清4, 韩士杰5
收稿日期:
2010-06-21
接受日期:
2011-03-11
出版日期:
2011-06-21
发布日期:
2011-06-30
通讯作者:
王晶苑
作者简介:
* E-mail: wangjy@igsnrr.ac.cn
WANG Jing-Yuan1,*(), WANG Shao-Qiang1, LI Ren-Lan2, YAN Jun-Hua3, SHA Li-Qings4, HAN Shi-Jie5
Received:
2010-06-21
Accepted:
2011-03-11
Online:
2011-06-21
Published:
2011-06-30
Contact:
WANG Jing-Yuan
摘要:
为了评价不同森林类型的生态化学计量特征的差异, 以吉林长白山温带针阔混交林、广东鼎湖山亚热带常绿阔叶林、云南西双版纳热带季雨林和江西千烟洲亚热带人工针叶林为研究对象, 通过对2007年4月-2008年5月4种典型区域森林植物叶片和凋落物的碳(C)氮(N)磷(P)元素质量比与N、P再吸收率的分析, 探讨了4种森林类型N、P养分限制和N、P养分再吸收的内在联系。结果表明: 1)从森林类型上看, 温带针阔混交林叶片的C : N : P为321 : 13 : 1, 亚热带常绿阔叶林叶片的C : N : P为561 : 22 : 1, 热带季雨林叶片的C : N : P为442 : 19 : 1, 亚热带人工针叶林叶片的C : N : P为728 : 18 : 1; 凋落物的C : N : P也是亚热带人工林最高, 达1 950 : 27 : 1, 温带针阔混交林的最低, 为552 : 14 : 1, 热带季雨林的为723 : 24 : 1, 亚热带常绿阔叶林的为1 305 : 35 : 1, 不同森林类型凋落物的C : N : P的计量大小关系与叶片的结果一致; 2)从植物生活型上看, 常绿针叶林叶片的C : N均显著高于常绿阔叶林及落叶阔叶林; 叶片C : P与森林类型的关系并不十分密切; 常绿阔叶林叶片的N : P最高, 常绿针叶林次之, 落叶阔叶林最低; 3)植物叶片的N : P与月平均气温有显著的负相关关系, 但叶片的C : P基本不受月平均气温影响, 叶片的C、N、P计量比与降水的线性关系不显著; 4)高纬度地区的植物更易受N元素限制, 而低纬度地区植物更易受P元素的限制; 但受N或P限制的植物并不一定具有高的N或P再吸收率。研究结果表明, 不同类型森林的叶片与凋落物的化学计量特征具有一致性, 但是环境因子对不同类型植物化学计量比的影响并不相同。
王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰. 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 2011, 35(6): 587-595. DOI: 10.3724/SP.J.1258.2011.00587
WANG Jing-Yuan, WANG Shao-Qiang, LI Ren-Lan, YAN Jun-Hua, SHA Li-Qings, HAN Shi-Jie. C : N : P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology, 2011, 35(6): 587-595. DOI: 10.3724/SP.J.1258.2011.00587
站名 Station name | 地理位置 Geographic location | 海拔 Elevation (m) | 森林类型 Forest type | 代表树种 Representative tree species | 生活型 Life form |
---|---|---|---|---|---|
长白山站 Changbaishan Station | 41°41′ N, 127°42′ E | 736 | 温带针阔混交林 Temperate needle broad-leaved mixed forest | 水曲柳 Fraxinus mandschurica 红松 Pinus koraiensis 紫椴 Tilia amurensis 锥栗 Castanea henryi | DB EN DB DB |
鼎湖山站 Dinghushan Station | 23°09′ N, 112°30′ E | 300 | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 锥栗 Castanea henryi 黄果厚壳桂 Cryptocarya concinna 云南银柴 Aporusa yunnanensis | DB EB EB |
西双版纳站 Xishuangbanna Station | 21°41′ N, 101°25′ E | 570 | 热带季雨林 Tropical monsoon forest | 白颜树 Gironniera subaequalis 梭果玉蕊 Barringtonia fusicarpa 云树 Garcinia cowa | EB EB EB |
千烟洲站 Qianyanzhou Station | 26°44′ N, 115°03′ E | 100 | 亚热带人工林 Subtropical plantation forest | 湿地松 Pinus elliottii 马尾松 Pinus massoniana 杉木 Cunninghamia lanceolata 木荷 Schima superba | EN EN EN EB |
表1 主要树种及其生活型
Table 1 Main species of trees and their life forms
站名 Station name | 地理位置 Geographic location | 海拔 Elevation (m) | 森林类型 Forest type | 代表树种 Representative tree species | 生活型 Life form |
---|---|---|---|---|---|
长白山站 Changbaishan Station | 41°41′ N, 127°42′ E | 736 | 温带针阔混交林 Temperate needle broad-leaved mixed forest | 水曲柳 Fraxinus mandschurica 红松 Pinus koraiensis 紫椴 Tilia amurensis 锥栗 Castanea henryi | DB EN DB DB |
鼎湖山站 Dinghushan Station | 23°09′ N, 112°30′ E | 300 | 亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 锥栗 Castanea henryi 黄果厚壳桂 Cryptocarya concinna 云南银柴 Aporusa yunnanensis | DB EB EB |
西双版纳站 Xishuangbanna Station | 21°41′ N, 101°25′ E | 570 | 热带季雨林 Tropical monsoon forest | 白颜树 Gironniera subaequalis 梭果玉蕊 Barringtonia fusicarpa 云树 Garcinia cowa | EB EB EB |
千烟洲站 Qianyanzhou Station | 26°44′ N, 115°03′ E | 100 | 亚热带人工林 Subtropical plantation forest | 湿地松 Pinus elliottii 马尾松 Pinus massoniana 杉木 Cunninghamia lanceolata 木荷 Schima superba | EN EN EN EB |
森林类型 Forest type | pH | 有机碳 Organic carbon (mg·g-1) | 全氮 Total nitrogen (mg·g-1) | 全磷 Total phosphorus (mg·g-1) |
---|---|---|---|---|
温带针阔混交林 Temperate needle broad-leaved mixed forest | 5.48 ± 0.14 | 164.32 ± 8.48 | 13.04 ± 0.84 | 1.56 ± 0.25 |
热带季雨林 Tropical monsoon forest | 4.66 ± 0.14 | 10.60 ± 1.68 | 1.13 ± 0.13 | 0.20 ± 0.04 |
亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 4.08 ± 0.07 | 32.80 ± 3.67 | 2.50 ± 0.26 | 0.29 ± 0.02 |
亚热带人工林 Subtropical plantation forest | 4.54 ± 0.21 | 11.83 ± 3.55 | 0.86 ± 0.2 | 0.11 ± 0.01 |
表2 4种森林类型的土壤特征(0-10 cm) (平均值±标准偏差)
Table 2 Soil characteristics of four forest types (0-10 cm) (mean ± SD)
森林类型 Forest type | pH | 有机碳 Organic carbon (mg·g-1) | 全氮 Total nitrogen (mg·g-1) | 全磷 Total phosphorus (mg·g-1) |
---|---|---|---|---|
温带针阔混交林 Temperate needle broad-leaved mixed forest | 5.48 ± 0.14 | 164.32 ± 8.48 | 13.04 ± 0.84 | 1.56 ± 0.25 |
热带季雨林 Tropical monsoon forest | 4.66 ± 0.14 | 10.60 ± 1.68 | 1.13 ± 0.13 | 0.20 ± 0.04 |
亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 4.08 ± 0.07 | 32.80 ± 3.67 | 2.50 ± 0.26 | 0.29 ± 0.02 |
亚热带人工林 Subtropical plantation forest | 4.54 ± 0.21 | 11.83 ± 3.55 | 0.86 ± 0.2 | 0.11 ± 0.01 |
树种 Tree species | n | 碳含量 Carbon content (mg·g-1) | 氮含量 Nitrogen content (mg·g-1) | 磷含量 Phosphorus content (mg·g-1) | ||
---|---|---|---|---|---|---|
叶 Leaf | 温带针阔混交林 Temperate needle broad-leaved mixed forest | 红松 Pinus koraiensis | 14 | 522.90 ± 21.00 | 15.20 ± 1.60 | 1.30 ± 0.30 |
水曲柳 Fraxinus mandschurica | 4 | 455.52 ± 12.40 | 20.20 ± 2.60 | 1.36 ± 0.25 | ||
紫椴 Tilia anurensis | 3 | 484.90 ± 14.00 | 25.60 ± 3.30 | 2.33 ± 0.40 | ||
热带季雨林 Tropical monsoon forest | 云树 Garcinia cowa | 12 | 445.97 ± 12.99 | 13.50 ± 1.30 | 0.81 ± 0.04 | |
梭果玉蕊 Barringtonia fusicarpa | 12 | 490.35 ± 20.75 | 19.98 ± 2.04 | 1.30 ± 0.12 | ||
白颜树 Gironniera subaequalis | 12 | 446.73 ± 19.80 | 31.00 ± 1.80 | 1.03 ± 0.10 | ||
亚热带常绿阔叶林 Subtropical evergreen broadleaved forest | 锥栗 Castanea henryi | 7 | 494.80 ± 27.48 | 19.00 ± 2.08 | 1.03 ± 0.23 | |
黄果厚壳桂 Cryptocarya concinna | 7 | 548.60 ± 18.84 | 20.20 ± 1.36 | 1.15 ± 0.09 | ||
云南银柴 Aporusa yunnanensis | 7 | 374.87 ± 27.41 | 20.27 ± 1.05 | 0.90 ± 0.12 | ||
亚热带人工林 Subtropical plantation forest | 湿地松 Pinus elliottii | 12 | 522.70 ± 19.62 | 10.02 ± 1.38 | 0.62 ± 0.13 | |
杉木 Cunninghamia lanceolat | 12 | 510.65 ± 15.06 | 10.88 ± 1.13 | 0.75 ± 0.11 | ||
马尾松 Pinus massoniana | 12 | 522.59 ± 15.97 | 14.77 ± 1.68 | 1.02 ± 0.19 | ||
木荷 Superba schima | 12 | 490.85 ± 21.55 | 16.42 ± 2.34 | 0.63 ± 0.15 | ||
凋落物 Litter | 温带针阔混交林 Temperate needle broad-leaved mixed forest | 14 | 485.47 ± 28.17 | 12.94 ± 1.98 | 0.93 ± 0.21 | |
热带季雨林 Tropical monsoon forest | 12 | 504.57 ± 21.96 | 17.05 ± 1.25 | 0.70 ± 0.08 | ||
亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 6 | 514.12 ± 19.28 | 14.22 ± 2.21 | 0.43 ± 0.12 | ||
亚热带湿地松人工林 Subtropical Pinus elliottii plantation | 12 | 526.36 ± 17.97 | 5.63 ± 1.36 | 0.24 ± 0.09 | ||
亚热带杉木人工林 Subtropical Cunninghamia lanceolat plantation | 12 | 518.81 ± 16.41 | 7.47 ± 1.36 | 0.29 ± 0.06 | ||
亚热带木荷人工林 Subtropical Schima superba plantation | 12 | 486.28 ± 14.82 | 10.89 ± 1.01 | 0.30 ± 0.02 | ||
亚热带马尾松人工林 Subtropical Pinus massoniana plantation | 12 | 521.51 ± 16.40 | 7.72 ± 2.10 | 0.36 ± 0.15 |
表3 4种森林类型叶片和凋落物的C、N和P含量(平均值±标准偏差)
Table 3 Leaf and litter carbon, nitrogen and phosphorus content in four forest types (mean ± SD)
树种 Tree species | n | 碳含量 Carbon content (mg·g-1) | 氮含量 Nitrogen content (mg·g-1) | 磷含量 Phosphorus content (mg·g-1) | ||
---|---|---|---|---|---|---|
叶 Leaf | 温带针阔混交林 Temperate needle broad-leaved mixed forest | 红松 Pinus koraiensis | 14 | 522.90 ± 21.00 | 15.20 ± 1.60 | 1.30 ± 0.30 |
水曲柳 Fraxinus mandschurica | 4 | 455.52 ± 12.40 | 20.20 ± 2.60 | 1.36 ± 0.25 | ||
紫椴 Tilia anurensis | 3 | 484.90 ± 14.00 | 25.60 ± 3.30 | 2.33 ± 0.40 | ||
热带季雨林 Tropical monsoon forest | 云树 Garcinia cowa | 12 | 445.97 ± 12.99 | 13.50 ± 1.30 | 0.81 ± 0.04 | |
梭果玉蕊 Barringtonia fusicarpa | 12 | 490.35 ± 20.75 | 19.98 ± 2.04 | 1.30 ± 0.12 | ||
白颜树 Gironniera subaequalis | 12 | 446.73 ± 19.80 | 31.00 ± 1.80 | 1.03 ± 0.10 | ||
亚热带常绿阔叶林 Subtropical evergreen broadleaved forest | 锥栗 Castanea henryi | 7 | 494.80 ± 27.48 | 19.00 ± 2.08 | 1.03 ± 0.23 | |
黄果厚壳桂 Cryptocarya concinna | 7 | 548.60 ± 18.84 | 20.20 ± 1.36 | 1.15 ± 0.09 | ||
云南银柴 Aporusa yunnanensis | 7 | 374.87 ± 27.41 | 20.27 ± 1.05 | 0.90 ± 0.12 | ||
亚热带人工林 Subtropical plantation forest | 湿地松 Pinus elliottii | 12 | 522.70 ± 19.62 | 10.02 ± 1.38 | 0.62 ± 0.13 | |
杉木 Cunninghamia lanceolat | 12 | 510.65 ± 15.06 | 10.88 ± 1.13 | 0.75 ± 0.11 | ||
马尾松 Pinus massoniana | 12 | 522.59 ± 15.97 | 14.77 ± 1.68 | 1.02 ± 0.19 | ||
木荷 Superba schima | 12 | 490.85 ± 21.55 | 16.42 ± 2.34 | 0.63 ± 0.15 | ||
凋落物 Litter | 温带针阔混交林 Temperate needle broad-leaved mixed forest | 14 | 485.47 ± 28.17 | 12.94 ± 1.98 | 0.93 ± 0.21 | |
热带季雨林 Tropical monsoon forest | 12 | 504.57 ± 21.96 | 17.05 ± 1.25 | 0.70 ± 0.08 | ||
亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 6 | 514.12 ± 19.28 | 14.22 ± 2.21 | 0.43 ± 0.12 | ||
亚热带湿地松人工林 Subtropical Pinus elliottii plantation | 12 | 526.36 ± 17.97 | 5.63 ± 1.36 | 0.24 ± 0.09 | ||
亚热带杉木人工林 Subtropical Cunninghamia lanceolat plantation | 12 | 518.81 ± 16.41 | 7.47 ± 1.36 | 0.29 ± 0.06 | ||
亚热带木荷人工林 Subtropical Schima superba plantation | 12 | 486.28 ± 14.82 | 10.89 ± 1.01 | 0.30 ± 0.02 | ||
亚热带马尾松人工林 Subtropical Pinus massoniana plantation | 12 | 521.51 ± 16.40 | 7.72 ± 2.10 | 0.36 ± 0.15 |
森林类型 Forest type | C : N : P |
---|---|
温带针阔混交林 Temperate needle broad-leaved mixed forest | 321 : 13 : 1 |
热带季雨林 Tropical monsoon forest | 442 : 19 : 1 |
亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 561 : 22 : 1 |
亚热带人工林 Subtropical plantation forest | 728 : 18 : 1 |
温带针阔混交林凋落物 Litter of temperate needle broad-leaved mixed forest | 552 : 14 : 1 |
热带季雨林凋落物 Litter of tropical monsoon forest | 723 : 24 : 1 |
亚热带常绿阔叶林凋落物 Litter of subtropical evergreen broad-leaved forest | 1 305 : 35 : 1 |
亚热带人工林凋落物 Litter of subtropical plantation forest | 1 950 : 27 : 1 |
表4 不同森林类型的生态化学计量特征
Table 4 Ecological stoichiometric characteristics of different forest types
森林类型 Forest type | C : N : P |
---|---|
温带针阔混交林 Temperate needle broad-leaved mixed forest | 321 : 13 : 1 |
热带季雨林 Tropical monsoon forest | 442 : 19 : 1 |
亚热带常绿阔叶林 Subtropical evergreen broad-leaved forest | 561 : 22 : 1 |
亚热带人工林 Subtropical plantation forest | 728 : 18 : 1 |
温带针阔混交林凋落物 Litter of temperate needle broad-leaved mixed forest | 552 : 14 : 1 |
热带季雨林凋落物 Litter of tropical monsoon forest | 723 : 24 : 1 |
亚热带常绿阔叶林凋落物 Litter of subtropical evergreen broad-leaved forest | 1 305 : 35 : 1 |
亚热带人工林凋落物 Litter of subtropical plantation forest | 1 950 : 27 : 1 |
图1 不同区域叶片的碳氮磷计量比与月平均气温与降水量的关系。
Fig. 1 Relationships of C, N, P ratios of leaf in different regions with monthly average air temperature and precipitation.
图2 不同区域森林的养分再吸收率(平均值±标准误差, n = 3)。SEBF, 亚热带常绿阔叶林; SPF, 亚热带人工林; TMF, 热带季雨林; TNBF, 温带针阔混交林。
Fig. 2 Nutrition resorption efficiency of forest in different regions (mean ± SE, n = 3). SEBF, subtropical evergreen broad-leaved forest; SPF, subtropical plantation forest; TMF, tropical monsoon forest; TNBF, temperate needle broad-leaved mixed forest.
[1] |
Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
DOI URL |
[2] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] |
Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution and Systematics, 39, 153-170.
DOI URL |
[4] |
Chapin FS III, Kedrowski RA (1983). Seasonal changes in nitrogen and phosphorous fractions and autumn retranslocation in evergreen and deciduous Taiga trees. Ecology, 64, 376-391.
DOI URL |
[5] |
Chapin FS III, Moilanen L (1991). Nutritional controls over nitrogen and phosphorus resorption from alaskan birch leaves. Ecology, 72, 709-715.
DOI URL |
[6] |
Davidson EA, de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Sabá RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007). Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 447, 995-998.
DOI URL PMID |
[7] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N : P stoichiometry. BioScience, 46, 674-684.
DOI URL |
[8] |
Güsewell S (2004). N : P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[9] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
URL PMID |
[10] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Gengrg Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
URL PMID |
[11] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[12] |
Hogan EJ, Minnullina G, Smith RI, Crittenden PD (2010). Effects of nitrogen enrichment on phosphatase activity and nitrogen: phosphorus relationships in Cladonia portentosa. New Phytologist, 186, 911-925.
DOI URL PMID |
[13] | Hou XY (侯学煜) (1982). Chinese Vegetation Geology and Chemical Content of Dominant Plants (中国植被地理及优势植物化学成分). Science Press, Beijing. (in Chinese) |
[14] |
Killingbeck KT (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
DOI URL |
[15] |
Koerselman W, Meuleman AFM (1996). The vegetation N : P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[16] |
Lambers H, Raven JA, Shaver GR, Smith SE (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95-103.
DOI URL PMID |
[17] |
Liu CJ, Berg B, Kutsch W, Westman CJ, Ilvesniemi H, Shen XH, Shen GR, Chen XB (2006). Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Global Ecology and Biogeography, 15, 438-444.
DOI URL |
[18] | Liu XZ (刘兴诏), Zhou GY (周国逸), Zhang DQ (张德强), Liu SZ (刘世忠), Chu GW (褚国伟), Yan JH (闫俊华) (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology (植物生态学报), 34, 64-71. (in Chinese with English abstract) |
[19] | Lu RK (鲁如坤) (2000). Soil Agricultural Chemistry Analysis Methods (土壤农业化学分析方法). Chinese Agricultural Science and Technology Press, Beijing. (in Chinese) |
[20] |
Luyssaert S, Staelens J, de Schrijver A (2005). Does the commonly used estimator of nutrient resorption in tree foliage actually measure what it claims to? Oecologia, 144, 177-186.
DOI URL PMID |
[21] |
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C : N : P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401.
DOI URL |
[22] |
Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Marti G (2005). Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil, 278, 303-313.
DOI URL |
[23] |
Mulder C, Elser JJ (2009). Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 15, 2730-2738.
DOI URL |
[24] |
Niklas KJ (2006). Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Annals of Botany, 97, 155-163.
DOI URL PMID |
[25] |
Niva M, Svensson BM, Karlsson PS (2003). Nutrient resorption from senescing leaves of the clonal plant Linnaea borealis in relation to reproductive state and resource availability. Functional Ecology, 17, 438-444.
DOI URL |
[26] |
Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2003). Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia, 136, 220-235.
DOI URL PMID |
[27] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
URL PMID |
[28] | Ren SJ (任书杰), Yu GR (于贵瑞), Tao B (陶波), Wang SQ (王绍强) (2007). Leaf nitrogen and phosphorus stoichio- metry across 654 terrestrial plant species in NSTEC. Environmental Science (环境科学), 28, 2665-2673. (in Chinese with English abstract) |
[29] |
Richardson SJ, Allen RB, Doherty JE (2008). Shifts in leaf N : P ratio during resorption reflect soil P in temperate rainforest. Functional Ecology, 22, 738-745.
DOI URL |
[30] | Sun SC (孙书存), Chen LZ (陈灵芝) (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica (植物生态学报), 25, 76-82. (in Chinese with English abstract) |
[31] |
Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
DOI URL |
[32] |
Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007). Controls over foliar N : P ratios in tropical rain forests. Ecology, 88, 107-118.
DOI URL PMID |
[33] |
von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Härdtle W (2010). N : P ratio and the nature of nutrient limitation in Calluna-Dominated Heathlands. Ecosystems, 13, 317-327.
DOI URL |
[34] |
Wardle DA, Walker LR, Bardgett RD (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509-513.
DOI URL PMID |
[35] | Yan ER (阎恩荣), Wang XH (王希华), Zhou W (周武) (2008). N : P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 13-22. (in Chinese with English abstract) |
[36] | Yan ER (阎恩荣), Wang XH (王希华), Guo M (郭明), Zhong Q (仲强), Zhou W (周武) (2010). C : N : P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China. Chinese Journal of Plant Ecology (植物生态学报), 34, 48-57. (in Chinese with English abstract) |
[37] | Zhang L (张林), Luo TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica (植物生态学报), 28, 844-852. (in Chinese with English abstract) |
[1] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[2] | 申奥, 朱教君, 闫涛, 卢德亮, 杨凯. 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响[J]. 植物生态学报, 2018, 42(5): 573-584. |
[3] | 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J]. 植物生态学报, 2018, 42(4): 508-516. |
[4] | 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4): 282-291. |
[5] | 李苏, 刘文耀, 石贤萌, 柳帅, 胡涛, 黄俊彪, 陈曦, 宋亮, 武传胜. 亚热带森林系统4种附生蓝藻地衣的分布对生境变化的响应[J]. 植物生态学报, 2015, 39(3): 217-228. |
[6] | 吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红. 米槠和杉木人工林土壤呼吸及其组分分析[J]. 植物生态学报, 2014, 38(1): 45-53. |
[7] | 沈章军, 孙庆业, 田胜尼. 铜尾矿自然定居白茅对体内氮磷的适时分配及叶片氮磷代谢调节酶活性动态[J]. 植物生态学报, 2012, 36(2): 159-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19